References

- Review paper: Berry and Haile (2015) - summarizes Berry and Haile (2009), Berry and Haile (2014), and Berry, Gandhi, and Haile (2013)
- Alternative approach : Bonnet, Galichon, and Shum (2017), Chiong, Hsieh, and Shum (2017)

Motivation

- Can numerically check local parametric identification
- Parametric identification not enough
- Functional form assumptions in BLP are somewhat arbitrary and mostly chosen for convenience
- Do not want our conclusions to be driven by arbitrary assumptions
- Non parametric identification shows what assumptions are essential for results
Demand and

```
Paul Schrimpf
```

Market level
data: Berry
and Haile
(2014)
Micro data: Berry
and Haile (2009)
Bonnet,
Galichon, and
Shum (2017)
Other
identification
results
References

Market level data: Berry and Haile (2014)

Section 1

Demand and supply of differentiated products
Paul Schrimpf
Market level
data: Berry
and Haile
(2014)
Micro data: Berry
and Haile (2009)
Bonnet,
Galichon, and
Shum (2017)
Other
identification
results
References
References

Market level data: Berry and Haile (2014)

Model

$$
s_{j t}=\sigma_{j}\left(\chi_{t}\right)=P\left(\underset{k}{\arg \max } v_{i k t}=j \mid \chi_{t}\right)
$$

Demand and supply of differentiated products

Paul Schrimpf

Market level data: Berry and Haile (2014)

Micro data: Berry and Haile (2009)
Bonnet,

Rationale for setup

- Parametric models:
- Logit random utility:

$$
u_{i j t}=x_{j t} \beta-\alpha p_{j t}+\xi_{j t}+\epsilon_{i j t}
$$

implies

$$
x_{j t}^{(1)}+\tilde{\xi}_{j t}=\frac{1}{\beta^{(1)}}\left(\ln \left(s_{j t}-\ln \left(s_{0 t}\right)\right)+\frac{\alpha}{\beta^{(1)}} p_{j t}-\frac{1}{\beta^{(1)}} x_{j t}^{(-1)} \beta^{(-1)}\right.
$$

- BLP implies:

$$
x_{j t}^{(1)}+\tilde{\xi}_{j t}=\frac{1}{\bar{\theta}^{(1)}}\left(\delta_{j}\left(s_{t}, p_{t}, \theta\right)-x_{j t}^{(-1)} \bar{\theta}^{(-1)}\right)
$$

- In each case:

$$
x_{j t}^{(1)}+\xi_{j t}=\text { function ofs }{ }_{t}, p_{t}, x_{t}^{(-1)}
$$

Assumptions

(1) Index restriction: partition $x_{j t}=\left(x_{j t}^{(1)}, x_{j t}^{(2)}\right)$, define

$$
\delta_{j t}=x_{j t}^{(1)}+\xi_{j t}
$$

then

$$
F_{v}\left(\cdot \mid x_{t}\right)=F_{v}\left(\cdot \mid \delta_{t}, x_{t}^{(2)}, p_{t}\right)
$$

(2) Connected substitutes: (see Berry, Gandhi, and Haile (2013))
(1) $\sigma_{k}\left(\delta_{t}, p_{t}, x_{t}^{(2)}\right)$ is nonincreasing in $\delta_{j t}$ and $-p_{j t}$ for $k \neq j$
(2) Among any subset $\mathcal{K} \subseteq \mathcal{J}, \exists j, k \in \mathcal{K}$ and $j \notin \mathcal{K}$ s.t. $\sigma_{k}\left(\delta_{t}, p_{t}, x_{t}^{(2)}\right)$ is decreasing in $\delta_{j t}$ and $-p_{j t}$
(3) IV exogeneity $\mathrm{E}\left[\xi_{j t} \mid z_{t}, x_{t}\right]=0$
(4) Rank condition / completeness: $\forall B\left(s_{t}, p_{t}\right)$ if $\mathrm{E}\left[B\left(s_{t}, p_{t}\right) \mid z_{t}, x_{t}\right]=0$ a.s., then $B\left(s_{t}, p_{t}\right)=0$ a.s.

Demand and supply of differentiated products

Paul Schrimpf

Identification of demand 1

- If 1-4, then $\xi_{j t}$ and $\sigma_{j}\left(\chi_{t}\right)$ are identified [Theorem 1]
- Connected substitute (1) \Rightarrow demand invertible

$$
\delta_{j t}=\sigma^{-1}\left(s_{t}, p_{t}\right)
$$

- IV \& rank condition:

$$
\mathrm{E}\left[x_{t}^{(1)}-\sigma^{-1}\left(s_{t}, p_{t}\right) \mid z, x\right]=0
$$

Implications for instruments 1

- 2J endogenous variables (s, p), so need at least $2 \boldsymbol{J}$ instruments
- J instruments from exogenous characteristic $x^{(1)}$
- Need J instruments that shift price and are excluded from demand
- Need variation in price and variation in share conditional on price
- Types of instruments that have been used:
- "BLP instruments" = characteristics of competing products
- Needed, but not sufficient (without more restrictions)
- Cost shifters:
- "Hausman instruments" = price of same good in other markets
- Consumer characteristics in nearby markets (e.g. Fan (2013))
- Functional form restrictions can reduce needed number of instruments, e.g. if

$$
\delta_{j t}=x_{j t}^{(1)}-\alpha p_{j t}+\xi_{j t}
$$

then only need 1 instrument for price

- More assumptions:
(1) $\sigma_{j}\left(\delta_{t}, p_{t}\right)$ continuously differentiable wrt p_{t}
(2) Known form of competition so know ψ_{j} such that

$$
m c_{j t}=\psi_{j}\left(s_{t}, M_{t},\left\{\frac{\partial \sigma}{\partial p}\right\}, p_{t}\right)
$$

- Then $m c_{j t}$ is identified [Theorem 3]
- If want to do counterfactuals that change quantities, need to know marginal cost function, not just $m c_{j t}=$ marginal cost at observed quantity
- If $m c_{j t}=\tilde{c}_{j}\left(Q_{j t}, w_{j t}\right)+\omega_{j t}$ and have instruments $y_{j t}$ such that $\mathrm{E}[\omega \mid \omega, y]=0$, then c_{j} and $\omega_{j t}$ identified [Theorem 4]
- If ψ_{j} is unknown, then with stronger assumptions about marginal cost function and cost instruments, can still identify $\omega_{j t}$ [Theorem 5]
- Can then test for different forms of ψ_{j} [Theorem 9]
- Require index restriction on c_{j},

$$
m c_{j t}=c_{j}\left(Q_{j t}, w_{j t}^{(1)} \gamma_{j}+\omega_{j t}, w_{j t}^{(2)}\right)
$$

Simultaneous equations approach 1

- Use demand and supply equations together and can replace completeness conditions with regularity conditions about demand and supply equations
- Will need no external instruments (but do need exclusions)
- Index assumptions imply

$$
\begin{equation*}
\underbrace{x_{j t}+\xi_{j t}}_{=\delta_{j t}}=\sigma^{-1}\left(s_{t}, p_{t}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\underbrace{w_{j t}+\omega_{j t}}_{=\kappa_{j t}}=\pi^{-1}\left(s_{t}, p_{t}\right) \tag{2}
\end{equation*}
$$

- Assume $x, w \Perp \xi, \omega$ and $\operatorname{supp}(x, w)=\mathbb{R}^{2 J}$

Simultaneous equations approach 2

- Assume conditions (including for each δ, k there is unique s, p) such that can make change of variables so

$$
\begin{align*}
& f_{s, p}\left(s_{t}, p_{t} \mid x_{t}, w_{t}\right)= \\
& \quad=f_{\xi, \omega}\left(\sigma^{-1}\left(s_{t}, p_{t}\right)-x_{t}, \pi^{-1}\left(s_{t}, p_{t}\right)-w_{t}\right)\left|\mathcal{J}\left(s_{t}, p_{t}\right)\right| \tag{3}
\end{align*}
$$

where $\mathcal{J}(s, p)=$ Jacobian wrt s, p of (1) and (2)

- Then can identify ξ, σ, ω [Theorems 6 and 7]
- Integrating (3) wrt x, w identifies $|\mathcal{J}(s, p)|$, then dividing gives $f_{\xi, \omega}$
- Integrating $f_{\xi, \omega}$ give F_{ξ}
- Location normalization: assume $\left.\sigma^{-1}\left(s^{0}, p^{0}\right)-x^{0}\right)=0$, then know $F_{\xi}(0)$

```
Demand and
    supply of
differentiated
products
Paul Schrimpf

\section*{Simultaneous equations approach 3}
- For other \(s, p\), can find \(x^{*}\) such that \(F_{\xi}\left(\sigma^{-1}(s, p)-x^{*}\right)=F_{\xi}(0)\), i.e. \(\sigma^{-1}(s, p)=x^{*}\), so \(\sigma^{-1}\) identified
- (1) identifies \(\xi_{j t}\)
- Same argument for \(\omega\)
```

Demand and
supply of
differentiated
products
Paul Schrimpf
Market level data: Berry
and Haile
(2014)
Micro data: Berry
and Haile (2009)

```

\section*{Bonnet,}
```

Galichon, and Shum (2017)
Other
identification results
References

Micro data: Berry and Haile
 (2009)

Model 1

- Consumer i, markets t, products $j \in \mathcal{J}_{t}$
- Consumer observations $z_{i t}=\left(z_{i 1 t}, \ldots, z_{j_{t} t}\right)$
- Observed product characteristics $x_{t}=\left(x_{1 t}, \ldots, x_{J_{t}}\right)$ (includes prices, may include product dummies)
- Scalar product unobservable $\xi_{j t}\left(z_{i t}\right)$
- Random utility function $u_{i t}: \mathcal{X} \rightarrow \mathbb{R}$
- Formally, there's a probability space, $(\Omega, \mathcal{F}, \mathbb{P})$ and

$$
v_{i j t}=u_{i t}\left(x_{j t}, \xi_{j t}\left(z_{i t}\right), z_{i j t}\right)=u\left(x_{j t}, \xi_{j t}\left(z_{i t}\right), z_{i j t}, \omega_{i t}\right)
$$

where $\omega_{i t} \in \Omega$ and u is measurable in $\omega_{i t}$ with $\omega_{i t} \Perp\left(x_{j t}, z_{i t}, \xi_{j t}\left(z_{i t}\right)\right)$

- E.g. random coefficients

$$
\begin{aligned}
& u\left(x_{j t}, \xi_{j t}\left(z_{i t}\right), z_{i j t}, \omega_{i t}\right)=x_{j t} \theta_{i t}+z_{i j t} \gamma+\xi_{j t}+\epsilon_{i j t} \\
\omega_{i t}= & \left(\theta_{i t}, \epsilon_{i 1 t}, \ldots, \epsilon_{i J_{t} t}\right)
\end{aligned}
$$

Model 2

- Allows distribution of θ and ϵ to depend on z, x, ξ
- Special regressor: $z_{i j t}^{(1)} \in \mathbb{R}$ s.t.

$$
v_{i j t}=\phi\left(\omega_{i t}\right) z_{i j t}^{(1)}+\tilde{\mu}\left(x_{j t}, \xi_{j t}\left(z_{i t}^{(2)}\right), z_{i j t}^{(2)}, \omega_{i t}\right)
$$

Restrictions:

(1) invariance of $\xi_{j t}\left(z_{i t}\right)$ to $z_{i t}^{(1)}$
(2) Additive separability
(3) $\tilde{\mu}$ monotonic in $\xi_{j t}$

Identifies mapping from choice probabilities to utilities

- Henceforth, all argument conditional on $z_{i t}^{(2)}$, so leave out of notation
- Normalizations
- $\xi_{j t} \sim U(0,1)$
- Location of utilities

$$
v_{i 0 t}=0
$$

Demand and supply of differentiated products

Paul Schrimpf

Market level data: Berry and Haile (2014)

Micro data: Berry and Haile (2009)

Bonnet,

Galichon, and Shum (2017)
Other
identification results

References

- Scale of utilities $\phi_{i t}=1$,

$$
v_{i j t}=z_{i j t}^{(1)}+\underbrace{\mu\left(x_{j t}, \xi_{j t}\left(z_{i t}^{(2)}\right), z_{i j t}^{(2)}, \omega_{i t}\right)}_{\equiv \mu_{j}\left(x_{j t}, \xi_{j t}, \omega_{i t}\right)}
$$

Identification definition 1

- Data: $\left(t, y_{i t},\left\{x_{j t}, \tilde{w}_{j t}, z_{i j t}\right\}_{j \in \mathcal{J}_{t}}\right)$
- Conditional choice probabilities

$$
p_{i j t}=P\left(y_{i t}=j \mid t,\left\{x_{k t}, \tilde{w}_{k t}, z_{i k t}\right\}_{k \in \mathcal{J}_{t}}\right)
$$

- Full identification of random utility model: means that for any given conditional choice probabilities there is a unique distribution of $\xi_{j t}\left(\right.$ given $z_{i j t}^{(2)}$) and a conditional distribution of utilities $\left\{v_{i j t}\right\}_{j \in \mathcal{J}_{t}}$ given $\left\{x_{j t}, \tilde{w}_{j t}, z_{i j t}\right\}_{j \in \mathcal{J}_{t}}$ that generates the given choice probabilities
- Identification of demand: for any conditional choice probabilities there is a unique distribution of $\xi_{j t}$ (given $\left.z_{i j t}^{(2)}\right)$ and unique structural choice probabilities

$$
\rho_{j}\left(\left\{x_{j t}, \xi_{j t}, z_{i j t}\right\}_{j \in \mathcal{J}_{t}}\right)=\mathrm{P}\left(y_{i t}=j \mid\left\{x_{k t}, \xi_{k t}, z_{i k t}\right\}_{k \in \mathcal{J}_{t}}\right)
$$

that match the choice probabilities

Assumptions

(1) Large support: $\operatorname{supp}\left\{z_{i j t}\right\}_{j \in \mathcal{J}_{t}} \mid\left\{x_{j t}\right\}_{j \in \mathcal{J}_{t}}=\mathbb{R}^{\left|\mathcal{J}_{t}\right|-1}$

2 Independence of instruments: $\xi_{j t} \Perp\left(w_{j t}, z_{i j t}\right) \forall j, t$
3 Rank condition: the quantile version of bounded completeness from Chernozhukov and Hansen (2005) applies to $D_{j}\left(x_{j t}, \xi_{j t}\right)$

- $\mu_{i j t}=\mu\left(x_{j t}, \xi_{j t}\left(z_{i t}^{(2)}\right), z_{i j t}^{(2)}, \omega_{i t}\right)$
- Large support:

$$
\begin{aligned}
& \lim _{z_{i k t}^{(1)} \rightarrow-\infty \forall k \neq j} P\left(y_{i t}=j \mid t,\left\{x_{k t}, \tilde{w}_{k t}, z_{i k t}\right\}_{k \in \mathcal{J}_{t}}\right)= \\
& =\lim _{z_{i k t}^{(1)} \rightarrow-\infty \forall k \neq j} \mathrm{P}\left(\begin{array}{c}
z_{i j t}+\mu_{i j t} \geq z_{i k t}+\mu_{i k t} \forall k \neq j \cap \\
\cap z_{i j t}+\mu_{i j t} \geq 0 \mid \\
\mid t,\left\{x_{k t}, \tilde{w}_{k t}, z_{i k t}\right\}_{k \in \mathcal{J}_{t}}
\end{array}\right) \\
& =P\left(z_{i j t}+\mu_{i j t} \geq 0 \mid t,\left\{x_{k t}, \tilde{w}_{k t}, z_{i k t}\right\}_{k \in \mathcal{J}_{t}}\right)
\end{aligned}
$$

Identification proof 2

- Independence of $z_{i j t}$ and $\left(\xi_{j t}, \omega_{i t}\right)$

$$
\begin{aligned}
\mathrm{P}\left(z_{i j t}+\mu_{i j t} \geq 0 \mid t,\left\{x_{k t}, z_{i k t}\right\}_{k \in \mathcal{J}_{t}}\right) & =\mathrm{P}\left(z_{i j t}+\mu_{i j t} \geq 0 \mid t, x_{j t}, z_{i j t}\right) \\
& =1-F_{\mu_{i j t} \mid t}\left(-z_{i j t} \mid x_{j t}, t\right)
\end{aligned}
$$

averaging over $x_{j t}$ identifies $F_{\mu_{i j t} \mid t}$, and so identifies conditional quantiles, e.g.

$$
\delta_{j t} \equiv \operatorname{median}\left[\mu_{j}\left(x_{j t}, \xi_{j t}, \omega_{i t}\right) \mid t\right]
$$

Define

$$
\operatorname{median}\left[\mu_{j}\left(x_{j t}, \xi_{j t}, \omega_{i t}\right) \mid x_{j t}, \xi_{j t}\right]=D_{j}\left(x_{j t}, \xi_{j t}\right)
$$

- Independence of $w_{j t}$ and $\xi_{j t}$, and $\xi_{j t} \sim U(0,1)$ implies that

$$
\mathrm{P}\left(\delta_{j t} \leq D_{j}\left(x_{j t}, \tau\right) \mid w_{j t}\right)=\tau
$$

Identification proof 3

- Nonparametric IV quantile regression of Chernozhukov and Hansen (2005) shows that with the bounded completeness condition D_{j} is unique identified, and so is $\xi_{j t}=D_{j}^{-1}\left(x_{j t}, \delta_{j t}\right)$
- Joint distribution of μ from

$$
p_{i o t}=\mathrm{P}\left(z_{i j t}+\mu_{i j t} \leq 0 \forall j \neq 0 \mid t, z_{i t}\right)
$$

- $F_{\mu \mid t}=F_{\mu \mid x_{t}, z_{i t}, \xi_{t}}$

Further remarks

- To summarize if (1)-(3) then the random utility model is identified
- If large support fails, then can still identify demand
- Identifying random utility model is not exactly the same as identifying random coefficients

$$
v_{i j t}=x_{j t} \theta_{i t}+z_{i j t} \nu+\xi_{j t}+\epsilon_{i j t}
$$

- This paper identifies $F_{v \mid x, z, \zeta}$, further conditions needed for distribution of θ, ϵ
- Given results in this paper, we can treat $v_{i j t}$ as observed and use standard results to identify distribution of coefficients (see conclusion of Berry and Haile (2009) for references)
- Most economic quantities that we might care about depend on the random utility model not the random coefficients
Demand and
Other
identification results
References

Section 2

Bonnet, Galichon, and Shum (2017)

Bonnet, Galichon, and Shum

(2017)

Yogurts choose consumers? identification of random utility models via two-sided matching

- Inversion of demand (market shares to mean utilities) for nonadditive models
- Connection between demand and two-sided matching
- Algorithm for computing identified set

Setup

with $\epsilon_{i} \in \Omega$ with distribution P known

- $\mathcal{U}_{\epsilon_{i}}$ and distribution of ϵ_{i} known
- Econometrician observes market shares

$$
s_{j}=\sigma_{j}(\delta)=\mathrm{P}\left(\mathcal{U}_{\epsilon j}\left(\delta_{j}\right) \geq \max _{j^{\prime}} \mathcal{U}_{\epsilon j^{\prime}}\left(\delta_{j}^{\prime}\right)\right)
$$

- Will characterize the identified set for δ given s

$$
\sigma^{-1}(s)=\left\{\delta \in \mathbb{R}^{\left|\mathcal{J}_{0}\right|}: \sigma(\delta)=s\right\}
$$

- All results could be conditional on individual covariates

Examples

- Additive model:

$$
\mathcal{U}_{\epsilon j}\left(\delta_{j}\right)=\delta_{j}+\epsilon_{j}
$$

and could have $\delta_{j}=x_{j} \beta$ as further restriction

- Risk aversion

$$
\mathcal{U}_{\epsilon j}\left(\delta_{j}\right)=\mathrm{E}_{\eta}\left[\frac{\left(\delta_{j}-p_{j}+\eta_{j}\right)^{1-\epsilon}}{1-\epsilon}\right]
$$

- Income shock

$$
\mathcal{U}_{\epsilon j}\left(\delta_{j}\right)=\max _{x} V(x)+\delta_{j}: x^{\prime} p \leq y_{j}+\epsilon_{i}
$$

Matching game

- Preferences and feasibility described by transfers :
- $f_{\epsilon j}(u)=$ transfer needed by consumer ϵ for utility u when matched with product j (increasing function)
- $g_{\epsilon j}(\delta)=$ transfer needed by product j to reach utility δ (increasing function)
- Equilibrium consists of :
- Matching probibility distribution π on $\Omega \times \mathcal{J}_{0}$
- Realized utilities u_{ϵ} and δ_{j} such that
- No blocking pair : $f_{\epsilon j}\left(u_{\epsilon}\right)+g_{\epsilon j}\left(v_{j}\right) \geq 0$ for all ϵ, j
- Feasibility : if $\pi(\epsilon, j)>0$, then $f_{\epsilon j}\left(u_{\epsilon}\right)+g_{\epsilon j}\left(v_{j}\right)=0$

Demand and

Theorem 1 : the following are equivalent
(1) $\delta \in \sigma^{-1}(s)$
(2) In matching game with $f_{\epsilon j}(u)=u$ and $g_{\epsilon_{j}}(-\delta)=-\mathcal{U}_{\epsilon_{j}}(\delta)$ Let $u_{\epsilon}=\max _{j \in \mathcal{J}_{0}} \mathcal{U}_{\epsilon, j}\left(\delta_{j}\right)$, and $v_{j}=-\delta_{j}$ Then $\exists \pi$ such that $(\pi, u,-\delta)$ is an equilibrium

Implications

- $\sigma^{-1}(s)$ is a connected lattice
- Partially order : $\delta \leq \delta^{\prime}$ iff $\delta_{j} \leq \delta_{j}$ for all j
- $\delta \wedge \delta^{\prime} \equiv$ greatest lower bound $=$ coordinate wise min, $\delta \vee \delta^{\prime}$ exist
\Rightarrow Has minimal and maximal elements
- Minimal and maximal elements = equilibrium matchings most preferred by consumers and products, respectively
- Modified versions of algorithms from matching literature can compute min and max

Combining with BLP framework

- This paper identifies set of mean utilities, still need assumption about how mean utilities relate to product characteristics to identify demand over characteristics
- Assume $\delta_{j}=p_{j} \alpha+\xi_{j}$ (or similar)
- Use algorithm to compute $\delta_{\min }$ and $\delta_{\max }$
- Identified set for α :

$$
\left\{\alpha: \mathrm{E}\left[\delta-p_{j} \alpha \mid Z\right]=0 \text { for some } \delta \in\left[\delta_{\min }, \delta_{\max }\right]\right\}
$$

Demand and supply of differentiated products
Paul Schrimpf
Market level
data: Berry
and Haile
(2014)
Micro data: Berry
and Haile (2009)

Bonnet,

Galichon, and Shum (2017)
Other
identification results

Section 3

Other identification results

Other identification references

- Berry, Gandhi, and Haile (2013) show connected substitutes is sufficient for invertibility of demand
- Fox and Gandhi (2011) identification of demand for any dimension ξ
- Chiappori and Komunjer (2009) identification through conditional independence instead of special regressor
- Fox et al. (2012) shows random coefficients logit (without endogeneity) is identified
Demand and supply of differentiated products
Paul Schrimpf
Market level data: Berry
and Haile

Bonnet,

Galichon, and Shum (2017)
Other
identification results
References
References

Section 4

References

Berry, Steven, Amit Gandhi, and Philip Haile. 2013.
"Connected Substitutes and Invertibility of Demand."
Econometrica 81 (5):2087-2111. URL http://dx.doi.org/10.3982/ECTA10135.
Berry, Steven T. and Philip A. Haile. 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers." Working Paper 15276, National Bureau of Economic Research. URL http://www.nber.org/papers/w15276.
---. 2014. "Identification in Differentiated Products Markets Using Market Level Data." Econometrica 82 (5):1749-1797. URL
http://dx.doi.org/10.3982/ECTA9027.
---. 2015. "Identification in Differentiated Products Markets." URL http://cowles.yale.edu/sites/ default/files/files/pub/d20/d2019.pdf.

Bonnet, Odran, Alfred Galichon, and Matthew Shum. 2017. "Yogurts Choose Consumers? Identification of Random Utility Models via Two-Sided Matching." URL https://ssrn.com/abstract=2928876.
Chernozhukov, V. and C. Hansen. 2005. "An IV model of quantile treatment effects." Econometrica 73 (1):245-261. URL http://onlinelibrary.wiley.com/doi/10.1111/ j.1468-0262.2005.00570.x/abstract.

Chiappori, P and Ivana Komunjer. 2009. "On the nonparametric identification of multiple choice models." Manuscript, Columbia University URL http: //www.columbia.edu/~pc2167/multiple090502.pdf.
Chiong, K, YW Hsieh, and Matthew Shum. 2017.
"Counterfactual Estimation in Semiparametric Discrete Choice Models." URL https://ssrn.com/abstract=2979446.

Fan, Ying. 2013. "Ownership Consolidation and Product Characteristics: A Study of the US Daily Newspaper Market." American Economic Review 103 (5):1598-1628. URL http://www. aeaweb.org/articles.php?doi=10. 1257/aer.103.5.1598.
Fox, Jeremy T. and Amit Gandhi. 2011. "Identifying Demand with Multidimensional Unobservables: A Random Functions Approach." Working Paper 17557, National Bureau of Economic Research. URL http://www.nber.org/papers/w17557.
Fox, Jeremy T., Kyoo il Kim, Stephen P. Ryan, and Patrick Bajari. 2012. "The random coefficients logit model is identified." Journal of Econometrics 166 (2):204-212. URL http://www.sciencedirect.com/science/article/ pii/S0304407611001655.

