Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Dynamic Oligopoly: Additional Issues

Paul Schrimpf

UBC Economics 565

March 5, 2020

References

Issues Paul Schrimpf

Dynamic Oligopoly:

Additional

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

• Reviews:

- Aguirregabiria and Nevo (2010)
- Aguirregabiria (2017) chapters
- Ackerberg, Caves, and Frazer (2015) section 3
- Aguirregabiria and Mira (2010)

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

1 Introduction

2 Computation

Improving calculation of value function

no and 11)

Onobserved heterogeneity Permanent unobserved heterogeneity Unobserved autocorrelated state variables Arcidiacono and Miller (2011)

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Section 1

Introduction

Introduction

Issues Paul Schrimpf

Dynamic Oligopoly:

Additional

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

- There are not many applied papers that estimate dynamic games (less true now than 4 years ago)
- Reasons:
 - Estimating dynamic games is computationally intensive
 Assumption that the only unobserved heterogeneity are i.i.d shocks is not plausible
 - Why bother estimating a complicated model if the results are not credible?
 - Should add some permanent and/or autocorrelated unobserved heterogeneity
- Today we will look at recent research addressing these two issues

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Section 2

Computation

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Computation 1

- Estimation involves maximizing some objective function subject to equilibrium conditions
- Estimation methods:
 - Maximum likelihood

$$\max_{\theta \in \Theta, \mathbf{P} \in [0,1]^{N}} \sum_{m=1}^{M} \sum_{t=1}^{T_{m}} \sum_{i=1}^{N} \log \Lambda \left(a_{imt} | v_{i}^{\mathbf{P}}(\cdot, x_{mt}; \theta) \right)$$

s.t. $\mathbf{P} = \Lambda (v^{\mathbf{P}}(\theta))$

• 2-step estimators: estimate $\hat{P}(a|x)$ from observed actions and then

$$\max_{\theta \in \Theta} \sum_{m=1}^{M} \sum_{t=1}^{T_m} \sum_{i=1}^{N} \log \wedge (a_{imt} | v_i^{\hat{\mathbf{P}}}(\cdot, x_{mt}; \theta))$$

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

- Permanent unobserved heterogeneity
- Unobserved autocorrelated state variables
- Arcidiacono and Miller (2011)

References

• Nested pseudo likelihood (NPL) (Aguirregabiria and Mira, 2007): after 2-step estimator update $\hat{\mathbf{P}}^{(k)} = \Lambda(v^{\hat{\mathbf{P}}^{(k-1)}}(\hat{\partial}^{(k-1)}))$, re-maximize pseudo likelihood to get $\hat{\partial}^{(k)}$ and repeat

- Computation time: 2-step $< NPL \le MLE$
- Possible reductions in computation
 - Improve calculation of $\Lambda(v^{\mathbf{P}}(\theta))$ (main problem is $v^{\mathbf{P}}$)
 - Improve maximization
 - Better maximization algorithm (MPEC Su and Judd (2012)); same issues with starting values and local optima as in BLP models
 - Bayesian method (MCMC) instead of maximization, Imai, Jain, and Ching (2009) and Gallant, Hong, and Khwaja (2012)

Computation 2

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Improving calculation of value function 1

• For finite state space can compute v^P as

$$V^{\mathbf{P}}(\theta) = (I - \delta \mathbf{M}_c)^{-1} \mathbf{M}_c [\pi(\theta) + g(\mathbf{p}, \theta)]$$

- Inverting matrix takes $O(S^3)$ operations where S is size of state space
 - Matrix inversion becomes prohibitively slow for surprisingly moderate *S*
 - On my desktop (AMD-FX8150 cpu) S = 1000 takes 1.15 seconds, S = 2000 takes 11.1 seconds, S = 3000 takes 38.6 seconds , S = 4000 takes 91.2 seconds
 - Faster hardware can cut these times by a constant factor, but still face cubic growth
 - Using GPU instead of CPU for matrix inversion can be much faster

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Improving calculation of value function 2

- On my desktop the GPU (NVidia GeForce GTX 560) takes about a hundredth as long to invert large matrices as the CPU
- Scientific computing using GPUs is a new and active field
- Programming for GPUs can be difficult
- Fast GPUs are not part of most servers
- Inverting sparse matrices can take much less than $O(S^3)$ operations
 - $I \delta \mathbf{M}_c$ is often sparse
 - Exact complexity of inversion depends on number of non-zero entries and their locations (sparsity pattern)
- Some papers iterate value equation instead of explicitly inverting

$$V^{\mathbf{P}}(\theta) = \mathbf{M}_{c} \left[\pi(\theta) + g(\mathbf{p}, \theta) + \delta V^{\mathbf{P}}(\theta) \right]$$

• Simulation often used

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Improving calculation of value function 3

- Still solving same equation, if solving accurately has to take $O(S^3)$
- If iterating is faster must be either (i) implicitly exploiting sparsity or (ii) solving inaccurately
- Estimation can proceed with approximate solutions that only become exact at estimated θ , e.g. Kasahara and Shimotsu (2011)
- M depends on P, so for 2-step methods only need to compute inverse once
- State space can be very large even for models that appear simple
 - E.g. entry/exit game with N firms whose identities matter $S = 2^{N}|X|$

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Reducing the size of the state space 1

• Economically motivated restrictions can reduce the size of the state space

R1 assume homogenous players and symmetric equilibrium

- E.g. entry game, assume:
 - 1 Only number of competitors and not their identities affects profits
 - 2 Firms have the same profit function
 - Symmetric equilibrium

then state space size is 2(N+1)|X|

R2 Inclusive values (Nevo and Rossi, 2008)

• Inclusive value = in discrete choice model the expected utility of a consumer from facing several options before observing the shocks (McFadden et al., 1978)

$$\mathsf{E}\left[\max_{j}u_{j}+\epsilon_{j}\right]$$

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono ano Miller (2011)

References

Reducing the size of the state space 2

- Adjusted inclusive value \approx inclusive value minus firm's marginal costs; denote by i_f
- With appropriate assumptions, profits can be written as function of adjusted inclusive values,

 π_f (all state variables) = $\pi_f(i_f, i_{-f})$

• Assume strategies only depend on adjusted inclusive values,

$$\mathsf{P}\left(i_{f,t+1}, i_{-f,t+1}|\mathsf{state}_{t}\right) = \mathsf{P}\left(i_{f,t+1}, i_{-f,t+1} \middle| i_{f,t}, i_{-f,t}, \sum \mathsf{invest}_{f,t}\right)$$

possible justifications:

- Strong assumptions about investment process
- Limited information of firms
- Bounded rationality: firms have as hard a time computing strategies as we do

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Reducing the size of the state space 3

- Then value function only depends on inclusive values
- R3 Oblivious equilibrium (Weintraub, Benkard, and Van Roy (2008), Weintraub, Benkard, and Van Roy (2010), Farias, Saure, and Weintraub (2012))
 - Oblivious equilibrium: firms make decisions conditional only on their own state variables and long-run industry average state
 - In Markov equilibrium, firms make decisions based on all state variables
 - Weintraub, Benkard, and Van Roy (2008) show that oblivious equilibrium approximates Markov perfect equilibrium as number of firms increases
 - Krusell and Smith (1998) use similar idea in dynamic macro model

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono ano Miller (2011)

References

Finite dependence 1

• Value function:

ν

$$\begin{aligned} \mathbf{M}^{\mathbf{P}}(\theta) &= \mathbf{M}_{c} \left[\pi(\theta) + g(\mathbf{p}, \theta) + \delta V^{\mathbf{P}}(\theta) \right] \\ &= \mathbf{M}_{c} \left[\pi(\theta) + g(\mathbf{p}, \theta) + \delta \mathbf{M}_{c} \left[\pi(\theta) + g(\mathbf{p}, \theta) + \delta V^{\mathbf{P}}(\theta) \right] \right] \\ &= \left(\sum_{t=0}^{T} \mathbf{M}_{c}^{t+1} \delta^{t} \right) \left[\pi(\theta) + g(\mathbf{p}, \theta) \right] + \mathbf{M}_{c}^{T+2} \delta^{T+1} V^{\mathbf{P}}(\theta) \end{aligned}$$

- Arcidiacono and Miller (2011): if $\mathbf{M}_{c}^{T+2} \delta^{T+1} V^{\mathbf{P}}(\theta)$ is identical across actions then it will drop out of $v^{p}(a, x) v^{p}(a', x)$, avoiding inversion
- Examples:
 - Renewal action: bus engine replacement
 - Terminal choice

Issues Paul Schrimpf

Dynamic Oligopoly: Additional

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Section 3

Unobserved heterogeneity

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Unobserved heterogeneity 1

- Only unobservables in basic dynamic model are i.i.d. shocks
- More plausible to allow richer unobserved heterogeneity i.e. unobserved state variables
- Panel data can identify fairly rich unobserved heterogeneity
 - E.g. in linear models:
 - Random effects
 - Fixed effects
 - (Dynamic factors)
 - Fixed effects with additional autocorrelation (dynamic panel models as in Blundell and Bond (2000))
 - Variants of methods for linear models can be applied to dynamic games, but not straightforward because of
 - Nonlinearity requires different identification arguments; complicates fixed effects estimation

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Unobserved heterogeneity 2

- Computation introducing unobserved state variables makes computing the model more complex
- Types of unobserved heterogeneity
 - Permanent firm or market unobserved heterogeneity
 - Similar to random or fixed effects
 - Aguirregabiria and Mira (2007), Collard-Wexler (2013), Aguirregabiria and Ho (2012)
 - Unobserved states that follow a controlled Markov process
 - Identification of transition probabilities: Kasahara and Shimotsu (2009), Hu and Shum (2012), Allman, Matias, and Rhodes (2009), Hu and Shum (2013)
 - Arcidiacono and Miller (2011), Kasahara and Shimotsu (2011)

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Permanent unobserved heterogeneity 1

- Here we go over approach of Aguirregabiria and Mira (2007) as described in Aguirregabiria and Nevo (2010)
- Market specific random effect in profits

 $\pi_{imt} = \Pi(a_{mt}, x_{imt}, \theta) + \theta_i(a) + \sigma_i \xi_m + \epsilon_{imt}$

- ϵ_{imt} i.i.d.
- ξ_m unobserved, discrete with finite support, known mean and variance (absorbed by θ_i and σ_i), known support, {ξ^ℓ}^ℓ_{ℓ=1}, pmf λ
- θ_i and σ_i varying with *i* requires large *T* (or large *M* and same firms across markets)
- Conditional choice probabilities different for each $\ell,$ denote by \textbf{P}_ℓ

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono an Miller (2011)

References

Permanent unobserved heterogeneity 2

• Equilibrium for each *ℓ*:

$$\mathbf{P}^{\ell} = \Lambda(\mathbf{v}^{\mathbf{P}_{\ell}}(\theta), \ell)$$

• Pseudo-likelihood integrates over distribution of ξ_m

$$\max_{\boldsymbol{\theta}, \mathbf{P}^{\ell}, \lambda} \sum_{m=1}^{M} \sum_{t=1}^{T} \sum_{i=1}^{N} \log \left(\sum_{\ell=1}^{L} \lambda_{\ell|x} \wedge \left(a_{imt} | v_i^{\mathbf{P}_{\ell}}(\cdot, x_{mt}; \theta, \ell) \right) \right)$$

s.t. $\mathbf{P}_{\ell} = \Lambda(v^{\mathbf{P}_{\ell}}(\theta), \ell)$

where

ł

$$\lambda_{\ell|x} = \mathsf{P}(\xi_m = \xi^{\ell}|x_{m1})$$

• Initial conditions problem

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono ano Miller (2011)

References

Permanent unobserved heterogeneity 3

- ξ_m will be correlated with initial values of endogenous state variables (markets with high ξ_m will start with a large number of firms)
- One solution: assume stationary, find stationary distribution of x | ζ,

$$P(x_t | \xi_m = \xi^{\ell}) = \sum_{x_{t-1}} P(x_{t-1} | \xi_m = \xi^{\ell}) P(x_t | x_{t-1}, \xi_m = \xi^{\ell})$$

Bayes' rule

$$\lambda_{\ell|x} = \frac{\lambda_{\ell} \mathsf{P}(x|\xi_m = \xi^{\ell})}{\sum_{j=1}^{L} \lambda_j \mathsf{P}(x|\xi_m = \xi^j)}$$

 To apply 2-step estimators need to first consistently estimate transition probabilities conditional on unobserved ξ_m and P^ℓ(·|x_{mt})

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono ano Miller (2011)

References

Permanent unobserved heterogeneity 4

- Can use Kasahara and Shimotsu (2009), but Aguirregabiria and Nevo (2010) say estimation is difficult
- Identification argument is constructive, based on singular value decomposition, can mimic for estimation , e.g. Hu, Shum, and Tan (2010)
- Levine, Hunter, and Chauveau (2011)
- NPL can be used but must iterate to convergence unless started from consistent $\hat{P}^{\ell}(\cdot|x_{mt})$
 - Start with arbitrary $P^{\ell}(\cdot|x_{mt})$
 - Maximize pseudo likelihood to get $\hat{\theta}$, distribution of ξ_m
 - Update $P^{\ell}(\cdot|x_{mt})$
 - Repeat until convergence

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Unobserved autocorrelated state variables 1

- Suppose state $x_{mt} = (x_{mt}^o, x_{mt}^u)$ where only x_{mt}^o is observed
- Kasahara and Shimotsu (2009) (for finite) and Hu and Shum (2012) (for continuous) give conditions for identification of transition probabilities $P(\cdot|x_{mt}^o, x_{mt}^u)$
- Given consistent $\hat{P}(\cdot|x_{mt}^{o}, x_{mt}^{u})$ can apply 2-step estimator or NPL
 - Estimation is difficult

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Arcidiacono and Miller (2011)

- Computationally tractable estimation with unobserved state variables
- Two innovations:
 - Avoid matrix inversion in value function computation through finite dependence
 - Modified EM algorithm to integrate out distribution of unobserved states

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

EM algorithm 1

- "Expectation-Maximization"
 - Expectation: conditional probabilities of unobserved state given observables and parameters updated
 - Maximization: maximize likelihood as though unobserved state observed
 - Repeated until convergence
- Setup: observe x, missing s, complete z = (x, s)
- Joint likelihood $p(x, z | \theta)$
- Marginal likelihood $L(\theta; x) = p(x|\theta) = E[p(x, z|\theta)|x, \theta]$
- Difficulty:

$$\mathsf{E}[p(x,s|\theta)|x,\theta] = \int_{S} p(x,s|\theta)p(s|x;\theta)ds$$

might be hard to compute

• Steps:

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

• Initial θ^{0}

- Expectation: calculate $p(s|x; \theta^0)$
- Maximization: $\theta^1 = \arg \max_{\theta} \int_{S} p(x, s|\theta) p(s|x; \theta^0) ds$
- Iterate to convergence
- Pros: stable each iteration guaranteed to increase likelihood
- Cons: slow?
- Arcidiacono and Miller (2011):
 - Not slow when using finite dependence so that maximization step fast
 - Show 2-step version of EM algorithm possible, i.e. can estimate p(s|x; θ) without estimating θ

$$p(\mathbf{s}|\mathbf{x}; \theta) = \frac{p(\mathbf{x}, \mathbf{s}|\theta)}{\sum_{\mathbf{s}'} p(\mathbf{x}, \mathbf{s}'|\theta)}$$

Can use empirical probabilities in place of model probabilities within EM algorithm

EM algorithm 2

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Ackerberg, Daniel A., Kevin Caves, and Garth Frazer. 2015. "Identification Properties of Recent Production Function Estimators." *Econometrica* 83 (6):2411–2451. URL http://dx.doi.org/10.3982/ECTA13408.

Aguirregabiria, Victor. 2017. "Empirical Industrial Organization: Models, Methods, and Applications." URL http://www.individual.utoronto.ca/vaguirre/ courses/eco2901/teaching_io_toronto.html.

Aguirregabiria, Victor and Chun-Yu Ho. 2012. "A dynamic oligopoly game of the US airline industry: Estimation and policy experiments." *Journal of Econometrics* 168 (1):156 – 173. URL http://www.sciencedirect.com/science/ article/pii/S030440761100176X. <ce:title>The Econometrics of Auctions and Games</ce:title>.

Aguirregabiria, Victor and Pedro Mira. 2007. "Sequential Estimation of Dynamic Discrete Games." *Econometrica* 75 (1):pp. 1–53. URL

http://www.jstor.org/stable/4123107.

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

---. 2010. "Dynamic discrete choice structural models: A survey." Journal of Econometrics 156 (1):38 - 67. URL http://www.sciencedirect.com/science/article/ pii/S0304407609001985.

Aguirregabiria, Victor and Aviv Nevo. 2010. "Recent developments in empirical IO: dynamic demand and dynamic games." MPRA Paper 27814, University Library of Munich, Germany. URL

http://ideas.repec.org/p/pra/mprapa/27814.html.

Allman, Elizabeth S., Catherine Matias, and John A. Rhodes. 2009. "IDENTIFIABILITY OF PARAMETERS IN LATENT STRUCTURE MODELS WITH MANY OBSERVED VARIABLES." *The Annals of Statistics* 37 (6A):pp. 3099–3132. URL http://www.jstor.org/stable/25662188.

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Arcidiacono, Peter and Robert A. Miller. 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity." *Econometrica* 79 (6):1823–1867. URL

http://dx.doi.org/10.3982/ECTA7743.

Blundell, R. and S. Bond. 2000. "GMM estimation with persistent panel data: an application to production functions." *Econometric Reviews* 19 (3):321–340. URL http://www.tandfonline.com/doi/pdf/10.1080/ 07474930008800475.

Collard-Wexler, Allan. 2013. "Demand Fluctuations in the Ready-Mix Concrete Industry." *Econometrica* 81 (3):1003-1037. URL http://dx.doi.org/10.3982/ECTA6877.

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Farias, Vivek, Denis Saure, and Gabriel Y. Weintraub. 2012.
"An approximate dynamic programming approach to solving dynamic oligopoly models." *The RAND Journal of Economics* 43 (2):253–282. URL http:

//dx.doi.org/10.1111/j.1756-2171.2012.00165.x.

Gallant, A Ronald, Han Hong, and Ahmed Khwaja. 2012. "Bayesian Estimation of a Dynamic Game with Endogenous, Partially Observed, Serially Correlated State." Tech. rep., Duke University, Department of Economics. URL http:

//econpapers.repec.org/paper/dukdukeec/12-01.htm.

Hu, Yingyao and Matthew Shum. 2012. "Nonparametric identification of dynamic models with unobserved state variables." *Journal of Econometrics* 171 (1):32 – 44. URL http://www.sciencedirect.com/science/article/ pii/S0304407612001479.

Paul Schrimpf

Introduction

Computation

Improving calculation of value function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

----. 2013. "Identifying dynamic games with serially-correlated unobservables." Structural Econometric Models 31:97À113. URL http://www.econ2.jhu.edu/ people/hu/AIE-Hu-Shum-2013.pdf.

Hu, Yingyao, Matthew Shum, and Wei Tan. 2010. "A simple estimator for dynamic models with serially correlated unobservables." Working papers // the Johns Hopkins University, Department of Economics 558, Baltimore, Md. URL http://hdl.handle.net/10419/49872.

Imai, Susumu, Neelam Jain, and Andrew Ching. 2009. "Bayesian estimation of dynamic discrete choice models." Econometrica 77 (6):1865-1899. URL http://onlinelibrary.wiley.com/doi/10.3982/ ECTA5658/abstract.

Kasahara, Hiroyuki and Katsumi Shimotsu. 2009.
"Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices." *Econometrica* 77 (1):135–175. URL http://dx.doi.org/10.3982/ECTA6763.

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

----. 2011. "Sequential Estimation of Dynamic Programming Models with Unobserved Heterogeneity." Tech. rep.
Krusell, Per and Anthony A. Smith. 1998. "Income and Wealth Heterogeneity in the Macroeconomy." *Journal of Political Economy* 106 (5):pp. 867–896. URL http://www.jstor.org/stable/10.1086/250034.

Levine, M., D. R. Hunter, and D. Chauveau. 2011. "Maximum smoothed likelihood for multivariate mixtures." Biometrika URL http://biomet.oxfordjournals.org/ content/early/2011/04/28/biomet.asq079.abstract.

McFadden, Daniel et al. 1978. *Modelling the choice of residential location*. Institute of Transportation Studies, University of California.

Nevo, Aviv and Federico Rossi. 2008. "An approach for extending dynamic models to settings with multi-product firms." *Economics Letters* 100 (1):49–52.

Paul Schrimpf

Introduction

Computation

Improving calculation of valu function

Unobserved heterogeneity

Permanent unobserved heterogeneity

Unobserved autocorrelated state variables

Arcidiacono and Miller (2011)

References

Su, C.L. and K.L. Judd. 2012. "Constrained optimization approaches to estimation of structural models." Econometrica 80 (5):2213-2230. URL http://onlinelibrary.wiley.com/doi/10.3982/ ECTA7925/abstract.

Weintraub, Gabriel Y., C. Lanier Benkard, and Benjamin Van Roy. 2008. "Markov Perfect Industry Dynamics With Many Firms." *Econometrica* 76 (6):1375–1411. URL http://dx.doi.org/10.3982/ECTA6158.

Weintraub, Gabriel Y, C Lanier Benkard, and Benjamin Van Roy. 2010. "Computational methods for oblivious equilibrium." Operations research 58 (4-Part-2):1247-1265. URL http://or.journal.informs.org/content/58/ 4-Part-2/1247.short.