Paul Schrimpf

Mode

Estimation

Applications Walmart's Entry int the Supermarket Industry

Cosman (2014)

References

Continuous Time Dynamic Models

Paul Schrimpf

UBC Economics 565

April 4, 2023

References

Model

Estimation

Continuous Time Dynamic

Models Paul Schrimpf

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

- Doraszelski and Judd (2012): less computation in continuous than discrete time
- Estimation and identification: Arcidiacono et al. (2016), Blevins (forthcoming)
- Applications:
 - Schiraldi, Smith, and Takahashi (2013)
 - Cosman (2014)

Paul Schrimpf

Model

Estimation

Applications Walmart's Entry into the Supermarket

Cosman (2014)

References

Model

 Applications
 Walmart's Entry into the Supermarket Industry Cosman (2014)

Paul Schrimpf

Model

- Estimation
- Applications
- Walmart's Entry into the Supermarket Industry
- Cosman (2014)
- References

Comparing continuous and discrete time models

- See discussion in Doraszelski and Judd (2012)
- Move order matters e.g. Cournot vs Stackelberg competition
- Discrete time model limits how often and how much state variables can change
- Embedding problem: sometimes there does not exist a continuous time Markov chain that induces the same probability distribution over states at discrete times as a discrete time Markov chain
- Often no compelling reason to prefer a discrete or continuous time model, but important to remember that they do have slightly different assumptions and implications

Paul Schrimpf

Model

- Estimation
- Applications
- Walmart's Entry into the Supermarket Industry
- Cosman (2014)

References

Why continuous time reduces computation

- Discrete time simultaneous move game suffers from "curse of dimensionality" in computing expectations
 - E.g. entry/exit game with N firms has at least 2^N possible states next period
- When only one player could move each instant then number of possible future states is much lower
- Continuous time: assume move opportunities arrive stochastically, then P(two move at same time) = 0

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

Section 1

Model

Model

Continuous Time Dynamic Models

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry int the Supermarket Industry

Cosman (2014)

References

• Notation of Arcidiacono et al. (2016)

- N players indexed by i
- Finite state space \mathcal{X} with K elements, indexed by k
- J actions in $\mathcal{A} = \{0, \dots, J-1\}.$
- Flow payoff *u_{ik}* from being in state *k*
- Instantaneous payoff $\psi_{ijk} + \epsilon_{ij}$ from choosing *j* in state *k*
- Discount rate ho

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

States follow an exogenous Markov jump process with intensity matrix:

State Transitions

$$Q = \begin{bmatrix} q_{11} \cdots q_{1K} \\ \vdots \ddots \vdots \\ q_{K1} \cdots q_{KK} \end{bmatrix}$$

where $q_{kl} = \lim_{h \to 0} \frac{P(X_{t+h} = l | X_t = k)}{h}$

is the rate of arrival of moves to state *l* given state *k*.

 States also change from actions: *l*(*m*, *j*, *k*) = state after player *m* chooses *j* in state *k*

Strategies

- Moves arrive at rate λ
- Beliefs of player $\zeta_{imjk} = P($ player m chooses *j* in state *k*)
- Value function:

$$\mathcal{V}_{ik}(\zeta_i) = \frac{u_{ik} + \sum_{l \neq k} V_{il}(\zeta_i) + \sum_{m \neq i} \lambda \sum_j \zeta_{imjk} V_{i,l(m,j,k)}(\zeta(i)) + \lambda \mathbb{E}[\max_j \psi_{ijk} + \epsilon_{ij} + V_{i,l(i,j,k)}(\zeta_i)]}{\rho + \sum_{l \neq k} q_{kl} + N\lambda}$$

• Best response choice probabilities

$$\sigma_{ijk} = \mathsf{P}(\psi_{ijk} + \mathsf{V}_{i,l(i,j,k)}(\zeta_i) + \epsilon_{ij} \ge \psi_{ij'k} + \mathsf{V}_{i,l(i,j',k)}(\zeta_i) + \epsilon_{ij'} \forall j')$$

• Equilibrium $\sigma_{-i} = \zeta_i$ for all *i*

Continuous Time Dynamic Models

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

Paul Schrimpf

Model

- Estimation
- Applications
- Walmart's Entry into the Supermarket Industry
- Cosman (2014)
- References

Identification

- Argument is mostly similar to discrete time
- Q and choice probabilities are identified from observed distribution of states
 - Extra argument needed if observed data is at discrete intervals see Arcidiacono et al. (2016) for details
- Given Q and knowing distribution of ϵ , differences in value functions are given by a known function of choice probabilities
- Expected (over other players actions) payoffs recovered from Bellman equation
- Exclusion identifies payoffs

Paul Schrimpf

Mode

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

Section 2

Estimation

Estimation

Continuous Time Dynamic Models

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

References

Step 1 : estimate hazards and choice probabilities

$$\hat{h} = \arg\max_{h} \sum_{m=1}^{M} \sum_{n=1}^{T} \underbrace{\log g(\tau_{mn}, k_{mn}; h)}_{\text{likelihood of waiting } \tau_{nm} \text{ to next event given state } k_{mn}} + \underbrace{\sum_{l \neq k_{mn}} I_{mn}(0, l) \log q_{k_{mn}l}}_{\text{next move exogenous state variable}} + \underbrace{\sum_{i} \sum_{j=\neq 0} I_{mn}(i, j) \log(\lambda \sigma_{ijk_{mn}})}_{\text{next move by a player}}$$

Estimation

Model

Estimation

Continuous Time Dynamic

Models Paul Schrimpf

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

Step 2 : given \hat{h} compute best response choice probabilites, represent implied hazards as $\Lambda(\theta, \hat{h})$

$$\hat{\theta} = \arg\max_{\theta} \sum_{m=1}^{M} \sum_{n=1}^{T} g(\tau_{mn}, k_{mn}; \Lambda(\theta, \hat{h}) + \sum_{i} \sum_{j=\neq 0} I_{mn}(i, j) \log(\lambda \Lambda_{ijk_{mn}}(\theta, \hat{h}))$$

Paul Schrimpf

Mode

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

Section 3

Applications

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

Walmart's Entry into the Supermarket Industry

- Application of Arcidiacono et al. (2016)
- Data: Trade Dimensions Retail Database 1994-2006
- Market = MSA with population \leq 500,000

Paul Schrimpf

h.	A	~	Ы	_	i.
	1	υ	u		I.

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

TABLE 1Summary statistics

	Mean	S.D.	Max
Number of chains present ^a	2.559	0.024	7
Average No. of stores per chain ^b	3.727	0.040	32
Number of Walmarts present ^a	1.004	0.142	12
Number of fringe firms present ^a	12.997	0.823	47
Number of new chain stores ^c	0.277	0.012	5
Number of exiting chain stores	0.224	0.011	7
Number of new fringe stores	0.825	0.021	10
Number of exiting fringe stores	0.908	0.023	11
Number of new Walmarts	0.177	0.008	3
Number of exiting Walmarts	0.002	0.001	1
Population increase	0.042	0.004	1
Population decrease	0.004	0.001	1

^a Sample size is 2910.

^b Sample size is 7446 and removes all market-period combinations where the chain operates no stores.

^c Sample size in this and all remaining rows is 2686.

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

TABLE 2Response to initial Walmart entry

	Year Before	Year During	Year After
Number of new chain stores	0.311	0.211	0.189
	(0.064)	(0.054)	(0.041)
Number of exiting chain stores	0.122	0.156	0.189
C	(0.038)	(0.044)	(0.050)
Number of new fringe stores	0.867	0.711	0.767
e.	(0.117)	(0.105)	(0.102)
Number of exiting fringe stores	0.789	0.844	0.833
88	(0.114)	(0.118)	(0.132)

Notes: Standard errors in parentheses. Based on 90 markets where Walmart is first observed to enter.

Model

Continuous Time Dynamic Models

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

and unobserved static market-type z

• Payoffs: flow profits partially cubic in *x_k*, plus opening, entry, and closing costs

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

TAB	LE 3
Chain firm	parameters

Time-ag	gregated	With W entry	/almart times	No unol heterog	bserved geneity
Coeff.	S.E.	Coeff.	S.E.	Coeff.	S.E.
4.470	(0.768)	4.403	(0.749)	2.561	(0.409
-0.065	(0.024)	-0.067	(0.024)	-0.017	(0.014)
-0.375	(0.148)	-0.383	(0.139)	-0.278	(0.108
-0.052	(0.017)	-0.053	(0.017)	-0.040	(0.012
-0.039	(0.081)	-0.044	(0.084)	0.104	(0.051
-0.182	(0.432)	-0.165	(0.445)	-0.265	(0.166
0.176	(0.114)	0.213	(0.111)	0.267	(0.075
-0.956	(0.881)	-0.968	(0.806)		
0.245	(0.199)	0.249	(0.191)		
-18.377	(0.805)	-18.400	(0.807)	-17.643	(0.953)
-5.151	(1.621)	-5.148	(1.676)		
-5.068	(0.876)	-5.073	(0.870)	-4.494	(0.782)
3.513	(0.968)	3.508	(0.986)		
15.913	(0.888)	15.912	(0.896)	15.044	(0.633
4.166	(1.261)	4.126	(1.274)		
	Time-ag Coeff. 4.470 -0.052 -0.375 -0.052 -0.176 0.245 -18.377 -5.058 3.513 15.913	Time-aggregated Coeff. S.E. 4.470 (0.768) -0.055 (0.024) -0.375 (0.148) -0.052 (0.017) -0.039 (0.081) -0.176 (0.114) -0.9245 (0.199) -18.377 (0.805) -5.151 (1.621) -5.068 (0.876) 3.513 (0.968) 15.913 (0.888) 4.166 (1.261)	Time-aggregated With W entry Coeff. S.E. Coeff. 4.470 (0.768) 4.403 -0.065 (0.024) -0.067 -0.375 (0.148) -0.383 -0.052 (0.017) -0.053 -0.039 (0.081) -0.044 -0.182 (0.432) -0.165 0.176 (0.114) 0.213 -0.956 (0.881) -0.968 0.245 (0.199) 0.249 -18.377 (0.805) -18.400 -5.068 (0.876) -5.073 3.513 (0.968) 3.508 15.913 (0.888) 15.912	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

TAB	LE 4
Fringe firm	parameters

	Time-ag	gregated	With W entry	/almart times	No unobserved heterogeneity	
	Coeff.	S.E.	Coeff.	S.E.	Coeff.	S.E.
Constant (θ_1^f)	-13.074	(0.080)	-13.092	(0.080)	-12.698	(0.067)
Number of chain stores (θ_2^f)	-0.021	(0.003)	-0.021	(0.003)	-0.018	(0.003)
Number of Walmarts $(\theta_2^f)^2$	-0.041	(0.012)	-0.042	(0.012)	-0.054	(0.012)
Number of fringe stores (θ_1^f)	0.183	(0.008)	0.183	(0.008)	0.193	(0.008)
Number of fringe stores squared / 100 (100 $\times \theta_{4}^{f}$)	-0.349	(0.018)	-0.349	(0.019)	-0.369	(0.018)
Population (θ_5^f)	0.240	(0.021)	0.248	(0.021)	0.170	(0.021)
Unobserved state (θ_6^f)	-2.530	(0.107)	-2.544	(0.107)		
Unobserved state \times number of fringe stores (θ_7^f)	0.050	(0.006)	0.051	(0.006)		
Entry cost (η_0^f)	-5.034	(0.033)	-5.034	(0.033)	-5.030	(0.033)
Entry cost × Unobserved State (η_1^f)	1.186	(0.079)	1.190	(0.079)		

Paul Schrimpf

Applications

Walmart's Entry into the Supermarket Industry

References

	Counterfactual simulations of market structure in year 2014 with and without Walmart													
	Markets	Initial Pop	Chain firms	Chain stores	Fringe stores	Walmart stores	Chain share (%)	Walmart share (%)	Fringe share (%)	Cl (%)	C3 (%)	нні		
						With	h Walmart							
All Markets	205	17,6,153	2.41	9.17	11.98	2.42	39.9	10.8	49.4	25.4	48.1	0.22		
Midwest	58	175,371	1.75	5.88	14.36	2.07	27.3	9.9	62.7	21.7	39.1	0.20		
Northeast	22	205,180	2.18	8.48	14.32	2.58	35.2	10.7	54.1	24.0	45.3	0.21		
South	83	170,856	2.78	11.72	9.63	2.85	49.1	12.1	38.7	29.1	55.8	0.24		
West	42	172,494	2.71	9.02	12.11	1.96	41.3	9.3	49.4	23.8	46.6	0.20		

TABLE 5

Il Markets	205	176,153	2.77	12.43	9.85	0.00	54.9	0.0	44.6	29.9	55.7	0.26
Aidwest	58	175,371	2.13	8.41	11.81	0.00	42.0	0.0	58.0	27.6	47.5	0.25
Vortheast	22	205,180	2.61	12.22	11.18	0.00	53.7	0.0	46.3	30.6	55.4	0.27
outh	83	170,856	3.22	16.15	7.54	0.00	66.9	0.0	32.7	33.2	64.3	0.28
Vest	42	172,494	2.86	10.77	11.02	0.00	49.5	0.0	48.8	25.9	50.2	0.23

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

Positive

32

273,906

5.08

-30.5

	Counte	rfactual si	mulations	of changes	in market s	tructure due	e to Walma	rt's presei	nce	
	Markets	Initial Pop	Walmart stores	Chain stores (%)	Fringe stores (%)	Chain share (%)	Fringe share (%)	C1 (%)	C3 (%)	HHI (%)
All markets	205	176,153	2.42	-26.3	21.6	-27.3	10.6	-15.0	-13.7	-16.6
					By re	egion				
Midwest	58	175,371	2.07	-30.1	21.6	-34.8	8.1	-21.3	-17.8	-19.3
Northeast	22	205,180	2.58	-30.5	28.1	-34.5	16.8	-21.5	-18.4	-21.8
South	83	170,856	2.85	-27.4	27.7	-26.5	18.7	-12.4	-13.2	-15.6
West	42	172,494	1.96	-16.3	9.9	-16.6	1.2	-8.1	-7.2	-11.9
					By mar	ket size				
Small	104	117,740	1.76	-24.3	7.0	-23.1	5.0	-12.1	-9.9	-14.1
Large	101	236,300	3.09	-27.4	30.0	-31.7	16.2	-18.1	-17.9	-19.4
					By grow	wth type				
Slow	54	178.252	2.26	-35.8	40.6	-36.5	24.3	-22.3	-21.0	-23.8
Moderate	46	175,444	2.17	-38.9	18.5	-38.3	15.2	-16.3	-17.6	-9.7
Fast	105	175,383	2.61	-17.4	13.5	-18.6	1.0	-10.1	-8.4	-14.9
					By unobs	erved type				
More negative	9	106.248	1.20	-18.5	-17.2	-6.7	-6.2	29.6	27.3	42.3
Negative	68	127.754	1.62	-15.9	2.7	-17.9	-2.5	-9.4	-5.5	-11.3
Zero	96	184,404	2.20	-27.8	25.2	-31.1	18.2	-20.0	-19.2	-22.0

59.1

-33.7

-15.1

40.6

-17.8

-17.7

TABLE 6

Paul Schrimpf

			1
N.			
1.4		u	CI

Applications

Walmart's Entry into the Supermarket Industry

References

Counterfactual simulations of changes in market structure absent unobserved heterogeneity								
	Walmart stores	Chain stores (%)	Fringe stores (%)	Chain share (%)	Fringe share (%)	Cl (%)	C3 (%)	HHI (%)
All Markets	3.15	-33.2	7.3	-33.1	9.0	-12.9	-9.7	-7.0
				By reg	ion			
Midwest Northeast South West Large Small	2.92 3.24 3.28 3.15 3.65 2.66	-38.4 -35.8 -32.3 -28.6 -30.5 -37.5	9.7 7.0 7.4 3.4 7.3 7.1	-41.5 -36.0 -29.8 -29.4 By marke -29.6 -36.2	8.3 9.7 11.7 3.9 et size 7.2 11.5	-17.2 -14.6 -10.0 -12.4 -12.2 -13.9	-12.0 -10.6 -8.5 -8.7 -9.5 -10.3	-6.6 -7.5 -6.6 -7.6 -7.8 -6.8
				By unobser	ved type			
More Negative Negative Zero Positive	2.22 2.71 3.24 4.07	-42.9 -35.9 -33.7 -29.6	15.6 6.0 6.7 9.3	-43.9 -36.9 -32.8 -24.4	13.1 8.5 7.6 13.7	-16.6 -14.9 -12.2 -10.1	-14.9 -9.8 -9.1 -10.1	-2.9 -6.5 -6.2 -12.5

TABLE 7

Paul Schrimpf

Model

Estimation

Applications

Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

 TABLE 8

 Temporal evolution of market structure

Year	Market size	WM stores	Chain stores (%)	Fringe stores (%)	Chain share (%)	Fringe share (%)	C1 (%)	C3 (%)	HHI (%)
5	Small	0.58	-6.8	3.4	-7.9	-0.1	-5.7	-6.3	-9.9
5	Large	0.87	-10.0	5.2	-9.9	2.9	-5.2	-7.5	-10.1
10	Small	1.06	-13.7	5.4	-14.3	0.8	-9.3	-9.2	-14.3
10	Large	1.76	-16.8	12.8	-18.3	6.6	-10.2	-12.0	-15.6
15	Small	1.45	-19.5	6.5	-19.4	2.0	-11.5	-10.3	-15.4
15	Large	2.52	-22.3	21.3	-25.6	11.1	-14.6	-15.2	-18.2
20	Small	1.76	-24.3	7.0	-23.1	5.0	-12.1	-9.9	-14.1
20	Large	3.09	-27.4	30.0	-31.7	16.2	-18.1	-17.9	-19.4

Jacob Cosman

Introduction

Entertainment districts

Gradients and prices

Bartik shocks

Conclusion

Appendix

Entertainment districts and the value of variety in nightlife: evidence from Chicago

- Competition between businesses in a set of closely related industries
- Structural model: infer consumer preferences, firm's problem from observing entry and exit
- Strong consumer preference from variety entrant can raise incumbent profits
- High barriers to entry matter for nightlife supply

Jacob Cosman

Introduction

Entertainment districts

Gradients and prices

Bartik shocks

Conclusion

Appendix

Related economic literature

- Consumption amenities and valuation of cities
 - Glaeser (2001), Rappaport (2008), Lee (2010), Albouy (2013)
- Measuring consumers' value of access to variety
 - Broda & Weinstein (2006), Consumer goods: Li (2012), Broda & Weinstein (2010), Handbury & Weinstein (2011), Couture (2014)
- Explaining colocation of similar businesses
 - Theoretical: Wolinsky (1983), Fischer & Harrington (1996), Konishi (2005)
 - Empirical: Davis (2006), Jia (2008), Dunne *et al.* (2013), Datta & Sudhir (2013), Yang (2014)
- Profit functions from entry/exit decisions
 - Bresnahan & Reiss (1991), Pesendorfer & Schmidt-Dengler (2003), Aguirregabiria and Mira (2007), Ryan (2012), Collard-Wexler (2013), Dunne *et al.* (2013)

Jacob Cosman

Introduction

Entertainment districts

Gradients and prices

Bartik shocks

Conclusion

Appendix

Structural modelling approach

• Data on venue entry and exit — find parameters to rationalize as equilibrium

• Build model in stages:

Static model: consumers choose to go out, venues choose price
 Dynamic model: venues choose whether to enter and exit

3 Estimation: match parameters to observed entry and exit

• Static and dynamic counterfactuals

Jacob Cosman

Introduction

Entertainment districts

Gradients and prices

Bartik shocks

Conclusion

Appendix

Static model

Consumer's problem

- Nested CES utility substitution within, between venue types
- Reservation utility shock: stay in or go out?
- · More utility to going out means more consumers choose to do so

Firm's problem

- Firms adjust prices to maximize profits taking into account consumer preferences, each others' behaviour
- Unique equilibrium prices for given number of competitors

Necessary assumption: interact only within neighbourhood

Jacob Cosman

Introduction

Entertainment districts

- Gradients and prices
- Bartik shocks
- Conclusion
- Appendix

Dynamic model and continuous-time estimation

Dynamic model of entry and exit

- Entrants, incumbents receive opportunities via Poisson process
- Entrants can enter with given type, neighbourhood
- Best-respond to consistent beliefs Markov-Nash equilibrium

Continuous-time structural estimation

- Arcidiacono, Bayer, Blevins, Ellickson
- Intuition: choose structural parameters so observed entry, exit rates rationalized as equilibrium
- Advantages: feasibility, data usage, flexibility

Jacob Cosman

Introduction

Entertainment districts

Gradients and prices

Bartik shocks

Conclusion

Appendix

Data sources

Venues and regulation from City of Chicago Data Portal (2006-2014)

• Divide venues into categories based on licensing:

- 1 Amusement only (e.g. Los Globos Ballroom)
- **2** Drinks only (e.g. Casual Tap)
- **3** Drinks and amusement (e.g. Tabu)
- **4** Drinks and music (e.g. New Celebrity Lounge)
- Two types of within-city regulation:
 - 1 Dry areas: no bars at all
 - 2 Moratoria: no new bars
- Divide city into neighbourhoods based on community areas

Demographic data from Census, American Community Survey

Estimated preference for variety

Jacob Cosman

Introduction

Entertainment districts

Gradients and prices

Bartik shocks

Conclusion

Appendix

Elasticity	Symbol	Estimate
Between sectors	η	2.04
		(0.002)
Amusement only	ρ_1	4.90
		(0.013)
Drinks only	ρ_2	2.15
		(0.001)
Drinks and amusement	ρ_3	3.56
		(0.224)
Drinks and music	ρ_4	7.96
	-	(0.290)

- Amusement only, Drinks and amusement $\approx 5^{th} 25^{th}$ percentile of consumer goods (Broda and Weinstein (2010))
- Drinks and music pprox restaurants (Couture (2014))

Jacob Cosman

Introduction

Entertainment districts

Gradients and prices

Bartik shocks

Conclusion

Appendix

Results: entry sunk cost and exit payoff

	Value (thousands of dollars)			
	Amusement only baseline	862		
F		[839, 886]		
	Drinks only baseline	943		
		[871, 1023]		
Entry Cost	Drinks and amusement baseline	892		
		[797, 995]		
	Drinks and music baseline	670		
		[83, 7588]		
	Amusement only	38.4		
		[36.6, 3383.7]		
	Drinks only	38.3		
Exit payoff		[37.5, 39.8]		
	Drinks and amusement	42.9		
		[36.8, 201.4]		
	Drinks and music	40.5		
		[38.5, 44.3]		

Jacob Cosman

Introduction

Entertainment districts

Gradients and prices

Bartik shocks

Conclusion

Appendix

Barriers to entry

Is \$700k-\$900k to open a bar reasonable?

- Small business literature:
 - PowerHomeBiz: \$239k-\$837k depending on jurisdiction
 - Houston Chronicle: up to \$1 million depending on licensing requirements
 - IBISWorld Industry Reports: \$200k-\$1 million

- Regulatory expenses: fees, time uncertainty, renovations to comply
- Marketing, hiring, cash on hand for payment systems

Jacob Cosman

Introduction

Entertainment districts

Gradients and prices

Bartik shocks

Conclusion

Appendix

One more venue: impacts on profits

Percentage of observations where counterfactual new venue would *increase* incumbent profit

	Amusement	Drinks	Drinks and	Drinks and
	only	only	amusement	music
Amusement	36.3	13.2	6.7	14.1
only	[0.0,36.3]	[0.0,13.6]	[6.4,19.1]	[0.0, 14.1]
Drinks	13.3	13.2	17.8	8.4
only	[12.7,13.6]	[0,14.5]	[9.5,18.5]	[0.0,8.6]
Drinks and	0.0	1.1	32.2	12.4
amusement	[0.0,0.3]	[0.0,1.2]	[0.0,86.8]	[0.0,12.4]
Drinks and	0.0	1.1	13.3	25.3
music	[0.0,0.0]	[0.0,1.1]	[0.0,13.3]	[0.0,26.3]

Dynamic counterfactual: lower barriers to entry

Jacob Cosman

- Introduction
- Entertainment districts
- Gradients and prices
- Bartik shocks
- Conclusion
- Appendix

Drinks only

5.6

4.8

4.0

3.2

2.4

1.6

0.8

Drinks and amusement

Drinks and music

Jacob Cosman

Introduction

Entertainment districts

Gradients and prices

Bartik shocks

Conclusion

Appendix

Discussion and further research

• Dynamic structural model for competition of related businesses

• Strong preferences for variety, high barriers to entry

• Further research: non-pecuniary benefits and goodness of fit

Paul Schrimpf

Model

Estimation

Applications Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

Arcidiacono, Peter, Patrick Bayer, Jason R. Blevins, and Paul B. Ellickson. 2016. "Estimation of Dynamic Discrete Choice Models in Continuous Time with an Application to Retail Competition." Tech. Rep. 3 (296). URL http://www.jstor.org/stable/43869556.

Blevins, Jason R. forthcoming. "Identifying Restrictions for Finite Parameter Continuous Time Models with Discrete Time Data." *Econometric Theory* URL http://jblevins.org/research/sde.pdf.

Cosman, Jacob. 2014. "Industry dynamics and the value of variety in nightlife: evidence from Chicago." Tech. rep., Working paper, University of British Columbia. URL http: //www.cemfi.es/ftp/pdf/papers/Seminar/cosman.pdf.

Doraszelski, Ulrich and Kenneth L. Judd. 2012. "Avoiding the curse of dimensionality in dynamic stochastic games." *Quantitative Economics* 3 (1):53–93. URL http://dx.doi.org/10.3982/QE153.

Paul Schrimpf

Model

Estimation

Applications Walmart's Entry into the Supermarket Industry

Cosman (2014)

References

Schiraldi, Pasquale, Howard Smith, and Yuya Takahashi. 2013. "Estimating a Dynamic Game of Spatial Competition: The Case of the UK Supermarket Industry." URL https:

//www.diw.de/documents/dokumentenarchiv/17/diw_
01.c.427473.de/abstract_takahashi-et-al.pdf.