Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Price dispersion and search

Paul Schrimpf

UBC Economics 565

November 25, 2015

References

Introduction

Price dispersion and

search Paul Schrimpf

- Models of price dispersion Fixed search Sequential search
- Hong and
- Additional empirical work
- Koulayev (2013)
- References

- Theory and overview of reduced form empirical work: Baye, Morgan, and Scholten (2006)
 - Structural empirical papers:
 - Hong and Shum (2006), Moraga-González and Wildenbeest (2008), De los Santos, Hortaçsu, and Wildenbeest (2012), Wildenbeest (2011)

Paul Schrimpf

Introduction

- Models of price dispersion Fixed search Sequential search Information clearinghouse
- Hong and Shum (2006)
- Additional empirical work
- Koulayev (2013)
- References

1 Introduction

- Models of price dispersion
 Fixed search
 Sequential search
 Information clearinghouse
- 3 Hong and Shum (2006)
- 4 Additional empirical work

5 Koulayev (2013)

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Section 1

Introduction

Paul Schrimpf

Introduction

- Models of price dispersion Fixed search
- Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

- Homogenous product and competitive market:
 - Theory \Rightarrow one price
 - Reality \Rightarrow price dispersion
 - Explanations:
 - Unobserved product heterogeneity
 - Likely part of explanation, but it is largely tautological
 - Imperfect information and search costs
 - Stigler (1961)

Prico	Table 1a: Measures of Price Dispersion Reported in the Literature in Offline Markets ¹					
dispersion and search	Study	Data Period	Product Market	Estimated Price Dispersion Measures	Dispersion Measure	
Paul Schrimpf	Bailey (1998)	1997	Books Books Compact Discs	13.2% 10.4% 17.6%	Standard Deviation Standard Deviation Standard Deviation	
Introduction	Borenstein and Rose (1994)	1986	Software U.S. Airline	7.1% 8.1% 0.018 - 0.416	Standard Deviation Standard Deviation Standard Deviation Gini coefficient	
Models of price	Carlson and Pescatrice (1980) Eckard (2004)	1976 1901 - 2001	Consumer Sundries Baking Powder, Sugar, Salt – 1901 Baking Powder, Sugar, Salt – 2001	3.3% - 41.4% 3.1% - 10.1% 0.0% - 13.4%	Coefficient of Variation Coefficient of Variation Coefficient of Variation	
dispersion	Friberg, Ganslandt and Sandstrom (2001)	1999	Books	\$54.00 - \$122.00	Range	
Fixed search Sequential search Information clearinghouse			Books Compact Discs Compact Discs Books (Sweden) Compact Discs (Sweden)	\$21.94 - \$76.20 \$20.00 - \$40.00 \$12.91 - \$23.86 \$19.00 - \$58.00 \$21.00 - \$46.00	Standard Deviation Range Standard Deviation Range Range	
Hong and	Lach (2002)	1993 - 1996	Refrigerator (Israel)	4.9% 11.4% - 19.7%	Coefficient of Variation	
Shum (2006)	Marvel (1976)	1964 - 1971	Regular Gasoline Premium Gasoline Premium Gasoline	\$0.048 \$0.015 \$0.048 \$0.017	Range Standard Deviation Range Standard Deviation	
empirical	Pratt, Wise and Zeckhauser (1979)	1975	Various Products and Services	4.4% - 71.4%	Coefficient of Variation	
Koulayev (2013)	Roberts and Supina (2000)	1963 - 1987	Various Products and Services Various Products and Services Wood Products Fabrics Coffee	11.0% - 567.0% 7.2% - 200.0% 13.8% - 90.2% 18.8% - 78.1% 14.3% - 25.1%	Range Value of Information Coefficient of Variation Coefficient of Variation	
References			Ready-Mixed Concrete Newsprint Gasoline Tinplate Steel Cans Pan Bread Comveted Shinoing Containers	13.2% - 37.2% 4.5% - 8.2% 6.2% - 11.8% 25.0% - 31.0% 26.0% - 49.6% 21.9% - 29.6%	Coefficient of Variation Coefficient of Variation Coefficient of Variation Coefficient of Variation Coefficient of Variation	
	Scholten and Smith (2002)	1976 - 2000	Consumer Sundries 2000 Consumer Sundries 2000	3.3% - 41.4% 1.6% - 42.0%	Coefficient of Variation Coefficient of Variation	
	Sorensen (2000)	1998	Prescription Drugs	\$13.17	Range	
	Stigler (1961)	1953	Anthracite Coal Anthracite Coal	\$3.46 \$1.15	Range Standard Deviation	
	Villas-Boas (1995)	1959 1985 - 1987	Identical Automobiles Identical Automobiles Coffee	\$165.00 \$42.00 21.5%	Range Standard Deviation Coefficient of Variation	

¹Table 1a includes studies comparing offline and online price dispersion.

Price				Intervals of	
dispersion and	Otente	Data Daviad	Desident Medica	Estimated Price	Discussion Managem
search	Study	Data Period	Product Market	Dispersion	Dispersion measure
Jearen				Measures	
Paul Schrimpf	Ancarani and Shankar (2004)	2002	Books (Italy)	€4.26 - €4.84	Standard Deviation
·			Books (Italy)	€20.00 - €22.88	Range
			Compact Discs (Italy)	€2.29 - €2.79 611.00 614.75	Standard Deviation
Introduction	Arbatekava and Bavo		Compact Discs (naiy)	£11.02 - £14.75	Range
meroduction	(Forthcoming)	1998	Mortgage Interest Rates	> 0.25	Range
Models of	Arnold and Saliba (2002)	2001	Textbooks	10.7% - 52.6%	Range
price	. ,		Textbooks	3.5% - 10.0%	Coefficient of Variation
dispersion			Textbooks	0.2% - 12.5%	Price gap
Fixed search	Baye, Morgan and Scholten (2003)	2000 - 2001	Consumer Electronics	\$123.88 - \$143.15	Range
Sequential search	Bave, Morgan and Scholten				
Information	(2004a)	2000 - 2001	Consumer Electronics	9.1% - 9.7%	Coefficient of Variation
clearinghouse			Consumer Electronics	3.79% - 5.38%	Gap
	Baye, Morgan and Scholten	1999 - 2001	Consumer Electronics	57.4%	Range
Hong and	(2004b)				
Shum (2006)	Routic and Rodoff (2002)	1000	Consumer Electronics	12.5%	Coefficient of variation
	Daylis and Fellon (2002)	1999	Scapper	\$106.00	Range
Additional	Bryniolfsson and Smith (2000)	1998-1999	Books	33.0%	Range
empirical			Compact Discs	25.0%	Range
work			·		5
	Chevalier and Goolsbee (2003)	2001	Books	8.1% - 12.3%	Range
Koulayev	Clay, Krishnan, and Wolff (2001)	1999 - 2000	Books	27.7%	Coefficient of Variation
(2013)			Books	\$7.62	Range
()	Clay, Krishnan, Wolff and	1999	Books	10.0% - 18.0%	Coefficient of Variation
References	Clemons Hann and Hitt (2002)		Travel	\$8.03 - \$13.40	Range
	Ellison and Ellison (2004)	2000 - 2001	Memory Modules	5.9% - 29.0%	Range
	Gatti and Kattuman (2003)	2002	Consumer Electronics (France)	3.0% - 15.3%	Coefficient of Variation
			Consumer Electronics (Italy)	4.3% - 14.2%	Coefficient of Variation
			Consumer Electronics (Netherlands)	5.6% - 20.4%	Coefficient of Variation
			Consumer Electronics (Spain)	2.2% - 13.3%	Coefficient of Variation
			Consumer Electronics (Sweden)	6.6% - 14.0%	Coefficient of Variation
			Consumer Electronics (UK)	3.5% - 16.2%	Coefficient of Variation
			Consumer Electronics (Denmark)	6.3% - 20.2%	Coefficient of Variation
			Consumer Electronics (France)	7.8% - 47.4%	Range
			Consumer Electronics (Nethorlands)	9.370 - 27.8%	Range
			Consumer Electronics (Spain)	3.8% - 32.4%	Range
			Consumer Electronics (Sweden)	16.4% - 50.4%	Range

Table 1b: Measures of Price Dispersion Reported in the Literature in Online Markets Only

Paul Schrimpf

Introduction

Models of price dispersion

- Fixed search Sequential search Information clearinghouse
- Hong and Shum (2006)
- Additional empirical work
- Koulayev (2013)
- References

Section 2

Models of price dispersion

Paul Schrimpf

Introduction

Models of price dispersion

Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Models of price dispersion

- Key point: relationship between price dispersion and primitives (search cost, market size, number of firms, demand elasticity) depends on modeling assumptions
- Types:
 - 1 Search
 - 1 Fixed : gather *n* prices, choose lowest price
 - Sequential : sequentially gather prices, stop when price low enough
 - Information clearinghouse : some consumers loyal to one firm, others buy from lowest price
 - Bounded rationality: small departure from Nash equilibrium in firms' pricing game can give large price dispersion
 - Quantal response equilibrium, ϵ -equilibrium, mistaken beliefs about price distribution

Fixed search

Introduction

Price dispersion and

search Paul Schrimpf

Models of price dispersion

Fixed search

Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

- Stigler (1961)
- Assumptions:
 - 1 Distribution of prices on $[\underline{p}, \overline{p}]$, non-degenerate CDF F(p), known by consumers
 - 2 Each consumer wants to buy K units
 - Search process: optimally choose fixed number of price quotes, n; buy from firm with lowest price

Paul Schrimpf

Introduction

Models of price dispersion

Fixed search

Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Fixed search - model implications

• Number of price quotes:

$$\left(\mathsf{E}[p^{(1:n^*-1)}] - \mathsf{E}[p^{(1:n^*)}]\right) K \ge c \ge \left(\mathsf{E}[p^{(1:n^*)}] - \mathsf{E}[p^{(1:n^*+1)}]\right) K$$

n* increasing in K

• Firm expected demand:

$$Q(p) = \mu n^* K(1 - F(p))^{n^* - 1}$$

- Transaction costs decrease with price dispersion
 - If G is a mean preserving spread of F, then $\mathbb{E}_G[p^{(1:n)}] < \mathbb{E}_F[p^{(1:n)}]$ for n > 1
- Expected total costs are lower with greater price dispersion
 - If G is a mean preserving spread of F, then $\mathbb{E}_G[p^{(1:n_G^*)}]K - cn_G^* < \mathbb{E}_F[p^{(1:n_F^*)}]K - cn_F^* \text{ for } n > 1$

Paul Schrimpf

Introduction

Models of price dispersion

Fixed search

Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Fixed search - critique I

- Rothschild (1973) critique:
 - 1 distribution of prices is not endogenous
 - 2 fixed search may not be optimal for consumers
- For (2) need to be more specific about search environment
 - Fixed search optimal if e.g. waiting time to obtain each price quote
- Diamond (1971) in sequential or fixed search model with homogenous firms and consumers, there is an equilibrium where all firms charge the monopoly price
- Can obtain non-degenerate equilibrium distribution of prices by introducing firm heterogeneity or consumer search cost heterogeneity

Paul Schrimpf

Introduction

Models of price dispersion

- Fixed search
- Information clearinghouse
- Hong and Shum (2006)
- Additional empirical work
- Koulayev (2013)
- References

Fixed search - endogenous price dispersion I

- Burdett and Judd (1983) : equilibrium price dispersion with ex-ante identical consumers and firms
- Assumptions:
 - 1 Consumers: unit demand with reservation price v
 - 2 Fixed sample search
 - Firms: constant marginal cost *m*, optimal monopoly price *p**
 - **4** Consumer utility given price p^* and n = 1 is positive
- Equilibrium: price distribution, F(p), and search distribution, P(n = i) for i = 1, 2, ...

Paul Schrimpf

Introduction

Models of price dispersion

Fixed search

Sequential searce Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Fixed search - endogenous price dispersion I

- Implications:
 - If F(p) non-degenerate, then P(n = 1), P(n = 2) > 0 and P(n > 2) = 0, let $\theta = P(n = 1)$, $1 \theta = P(n = 2)$
 - Firm profits:

3

$$\pi(p) = \begin{cases} (v - m)\theta & \text{if } p = v \\ (p - m)P(\text{consumer purchases}) & \text{if } p < v \end{cases}$$
$$= \begin{cases} (v - m)\theta & \text{if } p = v \\ (p - m)[\theta + (1 - \theta)(1 - F(p))] & \text{if } p < v \end{cases}$$

• Firms indifferent among prices implies:

$$F(p) = 1 - \frac{v - p}{p - m} \frac{\theta}{1 - \theta}$$

Paul Schrimpf

Introduction

Models of price dispersion

Fixed search

Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Fixed search - endogenous price dispersion II

• Consumers indifferent between n = 1 and n = 2 pins down θ (generally two equilibria with $\theta \in (0, 1)$ (there's also an equilibrium where firms charge monopoly price and n = 1 for all consumers))

Paul Schrimpf

Introduction

Models of price dispersion

Fixed search

Sequential search

Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Sequential search I

- Sequential search: consumer pays cost c to obtain price *p* ~ *F*; can either buy at price *p* (or any previous price) or search again
- Optimal strategy = reservation price p* = min{p
 , z*} where

$$c = \int_{\underline{p}}^{z^*} (z^* - p) f(p) dp = \int_{\underline{p}}^{z^*} F(p) dp$$

- With homogeneous firms and consumers unique equilibrium is for firms to charge the monopoly price
- Equilibrium price dispersion with:
 - Heterogeneous firm marginal cost and elastic demand (i.e. not unit demand); or
 - Heterogeneous search costs (and assumptions about distribution of search costs)

Paul Schrimpf

Introduction

- Models of price dispersion
- Fixed search
- Information clearinghouse
- Hong and Shum (2006)
- Additional empirical work
- Koulayev (2013)
- References

Information clearinghouse

- Finite number n > 1 of homogeneous firms
 - Constant marginal cost c
 - Clearinghouse charges $\phi \geq$ 0 to firms to list their prices
- Consumers with unit demand and reservation price \boldsymbol{v}
 - S > 0 "shoppers" consult clearinghouse, buy at lowest price if < v, else visits one other firm buys if price < v, else does not buy
 - L > 0 "loyal" consumers visit firm *i*, buy if $p_i < v$
- Equilibrium with price dispersion if L > 0 or $\phi > 0$
 - Non-clearinghouse prices all = v
 - Distribution of clearinghouse prices $\leq v$

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential searco Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Section 3

Hong and Shum (2006)

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Hong and Shum (2006): "Using price distributions to estimate search costs"

- Goal: estimate consumer search costs
- Environment: online booksellers
 - Homogeneous product
 - Homogeneous firm costs
- Data: distribution of prices
- Method: use distribution of prices + assumption about form of search to estimate distribution of consumer costs

x-axis: prices (in dollars)

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Fixed search I

- Firm marginal cost *r*, continuum of firms with equilibrium price distribution *F*_p
- Consumer search cost $c_i \sim F_c$
- Number of searches

$$\left(\mathsf{E}[p^{(1:n(c_i)-1)}] - \mathsf{E}[p^{(1:n(c_i))}] \right) K \ge c_i \ge \left(\mathsf{E}[p^{(1:n(c_i))}] - \mathsf{E}[p^{(1:n(c_i)+1)}] \right)$$

- Define $\Delta_n = E[p^{(1:n-1)}] E[p^{(1:n)}]$; F_P observed, so Δ_n identified
- Let $\tilde{q}_n = F_c(\Delta_{n-1}) F_c(\Delta_n) = \text{portion of consumers who obtain } n \text{ prices}$
 - \tilde{q}_n not observed
 - Assume F_c such that $\tilde{q}_n = 0$ for all n > K (could be relaxed, but complicates econometrics)

Fixed search II

• Firms indifferent among prices $p \in [p, \overline{p}]$, so

$$(\overline{p}-r)\tilde{q}_1 = (p-r)\left[\sum_{k=1}^{K} \tilde{q}_k k \left(1-F_p(p)\right)^{k-1}\right]$$

$$(\overline{p}-r)\tilde{q}_1 = (p-r)\left[\sum_{k=1}^{K} \tilde{q}_k k \left(1-\hat{F}_p(p_j)\right)^{k-1}\right]$$

identifies $\tilde{q}_1, \ldots, \tilde{q}_K$ and r

- Knowing $\tilde{q}_1, ..., \tilde{q}_K$ can solve for $F_c(\Delta_1), ..., F_c(\Delta_K)$
- Estimate using empirical likelihood (≈ efficiently weighted GMM)

Price dispersion and search

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential searc Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Nonsequential search model (K = 3, M = 5)

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential searc Information

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Sequential search I

- Consumer search cost $c_i \sim F_c$
- Reservation price, $p_i^* = \overline{p}(c_i) = \min\{z(c_i), \overline{p}\}$ where

$$c_i = \int_{\underline{p}}^{z(c_i)} (z(c_i) - p) f(p) dp = \int_{\underline{p}}^{z(c_i)} F(p) dp$$

Let G(p) = CDF of p_i^*

Firm indifference:

$$(\overline{p}-r)(1-G(\overline{p}))=(p-r)(1-G(p))$$

- Data: n_f prices, but $n_f 1$ indifference conditions, so need some restriction
 - Parametric assumption about F_c
 - (in fixed search model, assumption about *K* played a similar role)
 - Or fix r and estimate F_c nonparametrically
- Estimate by MLE

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

TABLE 1 Summary Statistics on Prices for Different Products

Product	n	List	Mean	Deviation	Median	<u>p</u>	\overline{p}
Stokey-Lucas	19	60.50	66.60	5.64	64.98	59.75	86.80
Lazear	17	31.95	34.73	2.48	35.27	29.51	37.70
Billingsley	20	99.95	95.48	5.87	98.90	83.58	100.87
Duffie	15	65.00	62.71	4.91	63.48	50.58	69.95

Note: Including shipping and handling costs. Price data for all products downloaded from Pricescan.com and MySimon.com: February 5, 2002. Summary price including S&H costs may not exceed the corresponding summary price without S&H costs, since we could not determine the shipping and handling charges from some of the websites.

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

TABLE 2 Search-Cost Distribution Estimates for Nonsequential-Search Model

						Selling	MEL
Product	K ^a M	M ^b	\tilde{q}_1^c	$ ilde{q}_2$	$ ilde{q}_3$	Cost r	Value
Parameter estimat	es and stan	dard errors	: nonsequential-sea	rch model			
Stokey-Lucas	3	5	.480 (.170)	.288 (.433)		49.52 (12.45)	102.62
Lazear	4	5	.364 (.926)	.351 (.660)	.135 (.692)	27.76 (8.50)	84.70
Billingsley	3	5	.633 (.944)	.309 (.310)		69.73 (68.12)	199.70
Duffie	3	5	.627 (1.248)	.314 (.195)		35.48 (96.30)	109.13
Search-cost distrib	ution estim	ates					
		Δ_1	$F_c(\Delta_1)$	Δ_2	$F_c(\Delta_2)$	Δ_3	$F_c(\Delta_3)$
Stokey-Lucas	2	.32	.520	.68	.232		
Lazear	1	.31	.636	.83	.285	.57	.150
Billingsley	2	.90	.367	2.00	.058		
Duffie	2	2.41	.373	1.42	.059		

^a Number of quantiles of search cost F_c that are estimated (see equation (5)). In practice, we set K and M to the largest possible values for which the parameter estimates converge. All combinations of larger K and/or larger M resulted in estimates that either did not converge or did not move from their starting values (suggesting that the parameters were badly identified).

^b Number of moment conditions used in the empirical likelihood estimation procedure (see equation (17)).

^c For each product, only estimates for $\tilde{q}_1, \ldots, \tilde{q}_{K-1}$ are reported; $\tilde{q}_K = 1 - \sum_{k=1}^{K-1} \tilde{q}_k$.

^d Indifferent points Δ_k computed as $E_{P(1:k)} - E_{P(1:k+1)}$ (the expected price difference from having k versus k + 1 price quotes), using the empirical price distribution. Including shipping and handling charges.

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

TABLE 3 Estimates of Sequential-Search Model

Product	δ_1	δ2	Median ^a Search Cost	Selling Cost r	α ^b	$F_c^{-1}(1-\alpha;\boldsymbol{\theta})$	Log-L Value
Stokey-Lucas	.46 (.02)	1.55 (.03)	29.40 (1.45)	22.90 (1.31)	.58	19.19	31.13
Lazear	.40 (.01)	1.15 (.01)	16.37 (1.00)	11.31 (.79)	.69	4.56	34.35
Billingsley	.25 (.01)	2.01 (.04)	9.22 (.94)	65.37 (.83)	.51	8.43	23.73
Duffie	.21 (.02)	4.57 (.29)	10.57 (2.01)	28.24 (1.63)	.54	7.00	18.93

Note: Including shipping and handling charges. Standard errors in parentheses. δ_1 and δ_2 are parameters of the gamma distribution; see equation (13).

^a As implied by estimates of the parameters of the gamma search-cost distribution.

^b Proportion of consumers with reservation price equal to \overline{p} , implied by estimate of r (see equation (11)).

Results

Paul Schrimpf

Price dispersion and

search

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

- For text books: Stokey-Lucas, Lazear, Billingsley, Duffie
 - Fixed search model:
 - Median search cost \approx \$2.50 (quantiles above median not identified)
 - 25%tile \$0.68 \$2.50
 - Selling cost r pprox 65% of median price
 - Sequential search model:
 - Median search cost \$9.22-\$29.40
 - Search cost such that $z(c_i) = \overline{p}$, \$4.56 \$19.19
 - Selling cost $r \approx$ 40% of median price
- Check whether parametric assumption driving sequential results: fix *r* and estimate nonparametrically

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

TABLE 4

Nonparametric Estimates of Sequential-Search Model, Holding r Fixed

Product	r	Search-Cost Estimates
r fixed at sequential-mode	estimates ^b	
Stokey-Lucas	22.90	$F_c^{-1}(0.42) = 20.20$
Lazear	11.31	$F_c^{-1}(0.31) = 2.97$
Billingsley	65.37	$F_c^{-1}(0.49) = 5.39$
Duffie	28.24	$F_c^{-1}(0.46) = 7.24$
r fixed at nonsequential-m	odel estimates	
Stokey-Lucas	49.52	$F_c^{-1}(0.5) = 4.52^d$
Lazear	27.76	$F_c^{-1}(0.5) = 0.26$
Billingsley	69.73	$F_c^{-1}(0.5) = 3.21$
Duffie	35.48	$F_c^{-1}(0.5) = 3.51$

^a For fixed r, quantiles of search-cost distribution are obtained nonparametrically using equation (14).

^b As reported in Table 2.

^c As reported in Table 3.

^d Median obtained by linear interpolation.

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Section 4

Additional empirical work

Paul Schrimpf

Introduction

- Models of price dispersion Fixed search
- Information

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Additional empirical work I

- Moraga-González and Wildenbeest (2008):
 - Oligopoly version of Hong and Shum (2006) fixed search model
 - MLE instead of nonparametric EL
- Chen, Hong, and Shum (2007):
 - Model selection test to choose between fixed and sequential search
 - Test is inconclusive
- Moraga-González, Sándor, and Wildenbeest (2012)
 - Hong and Shum (2006)/Moraga-González and Wildenbeest (2008) fixed search model with multiple markets
 - Data: multiple markets with common search cost distribution, but different reservation prices, firm costs, and/or number of firms
 - Semi-nonparametric estimator
 - Application: memory chips

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Additional empirical work II

- De los Santos, Hortaçsu, and Wildenbeest (2012)
 - Data on web browsing and purchases to test sequential vs fixed search
 - Key difference: behavior in sequential model depends on prices observed so far; in fixed model it does not
 - Context: online book stores
 - Results: favor fixed search model; also evidence of unobserved product heterogeneity (store loyalty)
- Hortaçsu and Syverson (2004)
 - Context: mutual funds
 - Model with search frictions and product heterogeneity
 - Results:
 - Investors value observable nonportfolio product attributes
 - Small search costs can rationalize price dispersion
- Wildenbeest (2011)
 - Vertical product differentiation and search frictions

Paul Schrimpf

Introduction

- Models of price dispersion Fixed search Sequential search
- Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Additional empirical work III

- Fixed search model
- ML estimation
- Context: grocery items
- Results: supermarket heterogeneity more important than search frictions
- Honka (2014): search & switching costs in auto insurance
 - Fixed search model
 - Consumer knows price of current insurer, and prices of *k* others
 - Pays switching cost if change insurer
 - Finds search costs more important than switching costs for customer retention & consumer welfare
- Search with learning: De los Santos, Hortacsu, and Wildenbeest (2012), Koulayev (2013)

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Section 5

Koulayev (2013)

Paul Schrimpf

Introduction

- Models of price dispersion Fixed search Sequential search
- Information clearinghouse
- Hong and Shum (2006)
- Additional empirical work
- Koulayev (2013)

References

Koulayev (2013)

- Search model with unknown distribution
- Model based on Rothschild (1974)
- Applied to S&P 500 mutual funds
- Highlights differences with search model with known price distribution

Model I

Paul Schrimpf

Price dispersion and

search

Models of price dispersion Fixed search Sequential search

clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

- N products with utilities $S_N = \{u_1, ..., u_N\}$, where $u_1 > u_2 > \cdots > u_N$
- Consumer believes possible utilities $S_G = \{\tilde{u}_1, ..., \tilde{u}_G\}$ with $S_N \subseteq S_G$
- Search technology: each search independent and \tilde{u}_g drawn with probability p_g
- Consumer does not know p_g , has Dirichlet prior with parameters $\alpha_1, ..., \alpha_G$,

$$f(\tilde{p}_1,\ldots,\tilde{p}_g) = \frac{\Gamma(\sum \alpha_g)}{\prod \gamma(\alpha_g)} \prod \tilde{p}_g^{\alpha_g-1}$$

which implies

$$\mathsf{E}[\tilde{p}_j] = \frac{\alpha_j}{\sum \alpha_g}$$

Model II

Paul Schrimpf

Price dispersion and

search

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

• Bayesian updating: after seeing \tilde{u}_g , n_g times,

 $f(p|n) \propto f(n|p)f(p)$ $\propto \frac{(\sum n_g)!}{\prod n_g!} \prod p_g^{n_g} \frac{\Gamma(\sum \alpha_g)}{\prod \gamma(\alpha_g)} \prod \tilde{p}_g^{\alpha_g - 1}$ $\propto \frac{\Gamma(\sum \alpha_g + n_g)}{\prod \gamma(\alpha_g + n_g)} \prod \tilde{p}_g^{\alpha_g + n_g - 1}$

so

$$\mathsf{E}[\tilde{p}_j|n_1,...,n_g] = \frac{\alpha_j + n_j}{\sum \alpha_g + n_g}$$

- · Sequential search and at end buy best good found
- Search cost c, best good found so far u_{r*}

Model III

Paul Schrimpf

Price dispersion and

search

- Models of price dispersion Fixed search Sequential search
- Information clearinghouse
- Hong and Shum (2006)
- Additional empirical work
- Koulayev (2013)

References

• Continue searching if

$$\mathbb{E}[\max\{\tilde{u}, u_{r^*}\}|n] - u_{r^*} > c$$
$$\sum_{\tilde{u}_g > u_{r^*}} (\tilde{u}_g - u_{r^*}) \mathbb{E}[\tilde{p}_g|n] > c$$

Paul Schrimpf

Introduction

- Models of price dispersion Fixed search Sequential search Information
- Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Market shares I

- Observe: market shares, product characteristics
- Consumers have different search costs $c_i \sim F(c)$
- Challenge: many search histories can lead to the same choice; need to integrate over all search histories to compute market shares
 - Define $\bar{k}_r = \text{longest}$ a consumer with best draw u_r will continue searching

$$\bar{k}_r = \max\left\{1, \left\lceil \frac{1}{c} \sum_{\bar{u}_g > u_{r^*}} (\tilde{u}_g - u_{r^*}) \alpha_g - \sum_g \alpha_g \right\rceil\right\}$$

- Show that market shares can be written as a function of just the $\bar{k}_1, ..., \bar{k}_N$
- \bar{k}_r is integer valued and decreasing in c

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

- -- - - - - - - - - - - - - - Product 2 - - - - Product 3

Example

Paul Schrimpf

Example

Product 2 - - - Product 3

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

- Paper has simulations comparing price elasticity in search with learning versus search without learning models
- Simulations also show that ignoring learning can lead to bias

Paul Schrimpf

Introduction

- Models of price dispersion Fixed search Sequential searc
- Information clearinghouse
- Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

- $u_g = -$ price (fixed fee per \$10,000 invested)
- $\log c_i \sim N(\mu_0 + \mu_1 t, \delta_0 + \delta_1 t)$
- Search probabilities depend on fund age:

$$\rho_{jt} = \frac{A_{jt}^{\gamma}}{\sum A_{kt}^{\gamma}}$$

- Rational prior: $\alpha_{jt} = \rho_{jt} N_0$
 - Consumers' prior not identified from market share data alone

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Table 1. Estimates of the distribution of search costs from models of search with (M1) and without (M0) learning. Search costs are expressed in basis points, that is, dollars per 10,000 investment. Bootstrapped standard errors in the columns are labeled "SE"

Parameter estimates	M0	SE	M1	SE
Elog(c)	2.74	0.55	2.25	0.38
Trend of Elog(c)	-0.34	0.28	-0.25	0.15
SDlog(c)	0.95	0.22	1.86	0.32
Trend of SDlog(c)	0.37	0.25	0.22	0.22
Age effect	2.31	0.70	2.35	0.89
R2	0.99		0.98	
Median search cost by year	M 0	M1		
1995	15.44	9.50		
1996	10.96	7.43		
1997	7.79	5.81		
1998	5.53	4.54		
1999	3.93	3.55		
2000	2.79	2.77		
Mean search cost by year	M 0	M1		
1995	24.20	53.85		
1996	26.10	64.98		
1997	32.27	82.31		
1998	45.70	109.42		
1999	74.15	152.69		
2000	137.87	223.65		
Interquartile range				
of search costs	M0-25	M0-75	M1-25	M1-75

Paul Schrimpf

Introduction

- Models of price dispersion Fixed search Sequential searc Information
- Hong and Shum (2006)
- Additional empirical work
- Koulayev (2013)
- References

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential searc Information

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Application: S&P 500 mutual funds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Baye, Michael R., John Morgan, and Patrick Scholten. 2006. "Information, Search, and Price Dispersion." Working Papers 2006-11, Indiana University, Kelley School of Business, Department of Business Economics and Public Policy. URL http://EconPapers.repec.org/RePEc:iuk: wpaper:2006-11.

Burdett, Kenneth and Kenneth L. Judd. 1983. "Equilibrium Price Dispersion." *Econometrica* 51 (4):pp. 955–969. URL http://www.jstor.org/stable/1912045.

Chen, Xiaohong, Han Hong, and Matthew Shum. 2007. "Nonparametric likelihood ratio model selection tests between parametric likelihood and moment condition models." *Journal of Econometrics* 141 (1):109 – 140. URL http://www.sciencedirect.com/science/article/ pii/S0304407607000103. <ce:title>Semiparametric methods in econometrics</ce:title>.

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

De los Santos, Babur, Ali Hortacsu, and Matthijs R Wildenbeest. 2012. "Search with Learning." Tech. rep. URL http:

//www.bus.indiana.edu/riharbau/RePEc/iuk/wpaper/ bepp2012-03-DelosSantos-Hortacsu-Wildenbeest. pdf.

De los Santos, Babur, Ali Hortaçsu, and Matthijs R. Wildenbeest. 2012. "Testing models of consumer search using data on web browsing and purchasing behavior." *The American Economic Review* 102 (6):pp. 2955–80. URL http://www.aeaweb.org/articles.php?f=s&doi=10. 1257/aer.102.6.2955.

Diamond, Peter A. 1971. "A model of price adjustment."
Journal of Economic Theory 3 (2):156 - 168. URL
http://www.sciencedirect.com/science/article/
pii/0022053171900135.

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search

Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Hong, Han and Matthew Shum. 2006. "Using Price Distributions to Estimate Search Costs." The RAND Journal of Economics 37 (2):pp. 257–275. URL http://www.jstor.org/stable/25046241.

Honka, Elisabeth. 2014. "Quantifying search and switching costs in the US auto insurance industry." *The RAND Journal of Economics* 45 (4):847–884. URL http://dx.doi.org/10.1111/1756-2171.12073.

Hortaçsu, Ali and Chad Syverson. 2004. "Product Differentiation, Search Costs, and Competition in the Mutual Fund Industry: A Case Study of S&P 500 Index Funds." The Quarterly Journal of Economics 119 (2):403-456. URL http://qje.oxfordjournals.org/content/119/2/ 403.abstract.

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Koulayev, Sergei. 2013. "Search With Dirichlet Priors: Estimation and Implications for Consumer Demand." Journal of Business & Economic Statistics 31 (2):226–239. URL

http://dx.doi.org/10.1080/07350015.2013.764696.

Moraga-González, José Luis and Matthijs R. Wildenbeest. 2008. "Maximum likelihood estimation of search costs." *European Economic Review* 52 (5):820 – 848. URL http://www.sciencedirect.com/science/article/ pii/S001429210700102X.

Moraga-González, José Luis, Zsolt Sándor, and Matthijs R. Wildenbeest. 2012. "SEMI-NONPARAMETRIC ESTIMATION OF CONSUMER SEARCH COSTS." Journal of Applied Econometrics :n/a-n/aURL

http://dx.doi.org/10.1002/jae.2290.

Paul Schrimpf

Introduction

Models of price dispersion Fixed search Sequential search Information clearinghouse

Hong and Shum (2006)

Additional empirical work

Koulayev (2013)

References

Rothschild, Michael. 1973. "Models of Market Organization with Imperfect Information: A Survey." *Journal of Political Economy* 81 (6):pp. 1283–1308. URL http://www.jstor.org/stable/1830741.

 ---. 1974. "Searching for the Lowest Price When the Distribution of Prices Is Unknown." *Journal of Political Economy* 82 (4):689–711. URL

http://www.jstor.org/stable/1837141.

Stigler, George J. 1961. "The Economics of Information."
Journal of Political Economy 69 (3):pp. 213-225. URL
http://www.jstor.org/stable/1829263.

Wildenbeest, Matthijs R. 2011. "An empirical model of search with vertically differentiated products." The RAND Journal of Economics 42 (4):729-757. URL http: //dx.doi.org/10.1111/j.1756-2171.2011.00152.x.