Paul Schrimpf

Chen (2023)

Introductio Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawfor and Matthew Shur (2007) Crawford, Shcherbakov, and Shum (2015)

References

Network Industries

Paul Schrimpf

UBC Economics 567

March 12, 2024

Introduction

Chen (2023)

Network Industries

Paul Schrimpf

- Introduction Model Results
- Incentive regulation Examples
- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

• Network industries

- Telecommunications, natural gas, electric power, railroads, etc
 - Natural monopolies
- Long-term trend from state-owned or highly regulated monopolies to vertically segmented with parts deregulated

Paul Schrimpf

Chen (2023 Introduction Model

Incentive regulation Examples

Cable television regulation an quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

1 Chen (2023) Introduction Model Results

2 Incentive regulation Examples

 Cable television regulation and quality Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

Paul Schrimpf

Chen (2023)

Introductio Model Results

Incentive regulation Examples

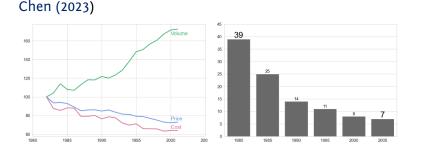
Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Section 1

Chen (2023)


Paul Schrimpf

Chen (2023)

- Introduction Model Results
- Incentive regulation Examples
- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Network Structure and Efficiency Gains from Mergers: Evidence from US Freight Railroads

(a) Shipment Price, Cost, and Volume

Figure 1: U.S. Freight Railroads

Introduction

Paul Schrimpf

Network Industries

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

- Model of oligopolistic competition on transportation network
- Firms choose: pricing, routing, maintenance
- Estimate model
- Simulate effects of each merger from 1985-2004 (no mergers since then)
- On average after merger shipment cost reduces by 12.9%, shipment price reduces by 8.8%, and the additive markup increases by 7.2%
 - Increased markup from other firms allocating away from region where merged firm operates

Paul Schrimpf

Data

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

• 3 data sets

- 1 confidential Carload Waybill Sample
- 2 Class I Railroad Annual Report
- 3 Commodity Flow Survey

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Rail network and ownership changes over time https://yanyouchen.com/american-railroads/

Paul Schrimpf

Chen (2023)

Introduction

Results

Incentive regulation

Examples

Cable television regulation an quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Data

Year	Number of Markets	Percentage of		nber of Com in an <i>o</i> –d M	Number of Waybills			
	Interchange Lin		mean	25th	75th	-		
			mean	percentile	percentile			
1985	12,088	41%	3	1	3	262,703		
1990	11,835	35%	2	1	3	323,570		
1995	11,632	26%	2	1	3	453,802		
2000	11,732	14%	2	1	2	544,738		
2005	$11,\!611$	11%	2	1	2	611,033		

Table 1: Summary Statistics of Market Competition

Source: The Surface Transportation Board, Carload Waybill Sample

Table 2: Summary Statistics of Variables

	Mean	Std. Dev.	25th Percentile	Median	75th Percentile	
Price per Railcar (\$)	1,034	1,399	384	703	1,266	
Shipment Weight (Tons per Railcar)	54	46	16	26	102	
Travel Distance (Miles)	1,045	773	404	854	$1,\!647$	
Number of Waybills (Carrier-Origin-Destination-Date) 12,113,581						

Source: The Surface Transportation Board, Carload Waybill Sample

Paul Schrimpf

Chen (2023)

Introductio
Model
Results

Incentive regulation Examples

Cable television regulation and quality Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Reduced Form Evidence

 Table 3: Effect of Mergers on Price Change (by Route Types)

	(1)	(2)
	Log Price	Log Price
Indicator of Merger	-0.093^{***}	
	(0.0142)	
Indicator of Merger		
\times Indicator of Interconnecting Route		-0.107^{***}
		(0.0178)
Indicator of Merger \times Indicator of Competing Route		-0.0690^{***}
Indicator of Merger × Non-interconnecting, Noncompeting Route		(0.0180) -0.0641^{***}
o,		(0.0171)
N	12,110,107	$12,\!110,\!107$
Firm FE	Yes	Yes
Year FE	Yes	Yes
o–d Route FE	Yes	Yes

Paul Schrimpf

Chen (2023)

Introductio
Model
Results

Incentive regulation Examples

Cable television regulation and quality Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Reduced Form Evidence

 Table 4: Effect of Merger on Price Change (by Commodities)

	(1)	(2)
	Log Price (Coal)	Log Price (Food or Kindred Products)
Indicator of Merger	-0.179^{***} (0.028)	$\frac{-0.052^{***}}{(0.014)}$
Log Billed Weight	-0.030 (0.020)	-0.212^{***} (0.010)
Ownership of Railcar (Private)	-0.096***	-0.132^{***}
. ,	(0.027)	(0.008)
Ownership of Railcar (Trailer Train)	-0.021	-0.144^{***}
((0.071)	(0.016)

Demand

Network Industries

Paul Schrimpf

Chen (2023)

ntroduction

Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and

References

• Utility of customer *i*, service *s* between origin-destination *od* at time *t*

 $u_{is,odt} = \alpha p_{s,odt} + \beta_1 \log \textit{Miles}_{s,odt} + \underbrace{\alpha_{os} + \alpha_{ds} + \alpha_{od} + \alpha_t}_{\text{fixed effects} \equiv \Xi_{s,odt}} + \epsilon_{is,odt}$

- ϵ extreme value
- Demand

$$Q_{s,odt} = M_{odt} \frac{e^{\alpha p_{s,odt} + \beta_1 \text{Miles}_{s,odt} + \bar{\xi}_{s,odt}}}{1 + \sum_{s'} e^{\alpha p_{s',odt} + \beta_1 \text{Miles}_{s',odt} + \bar{\xi}_{s',odt}}}$$

Paul Schrimpf

Chen (2023)

ntroduction

Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Firm's Problem

- Each period, firm *j* chooses
 - Prices $\{p_{s,o_j,d_j}\}_{(o_j,d_j)\in \mathbb{Z}_j^2}$
 - Routing $\{\mathcal{R}_{j,o_j,d_j}\}_{(o_j,d_j)\in \mathcal{Z}_j^2}$
 - Maintenance $\{I_{j,ab}\}_{ab \in A_j}$
- Profits

$$\pi_{j} = \max_{\{p\},\{\mathcal{R}\},\{l\}} \sum_{s \in S(j)} p_{s,od}Q_{s,od}(p_{s,od}, p_{-s,od}) - C(Q_{j}, R_{j}, I_{j})$$
s.t.
$$\sum_{ab \in \mathcal{A}_{j}} I_{j,ab} \leq K_{j}$$

$$\underbrace{\sum_{a \in \mathcal{Z}_{j}(z)} Q_{s,od} \mathbb{1}\{(a, z) \in \mathcal{R}_{j,o,d} + D_{j,z} = \sum_{b \in \mathcal{Z}_{j}(z)} Q_{s,od} \mathbb{1}\{(z, b)\}$$
balanced flow

Paul Schrimpf

Firm's Problem

Chen (2023)

Introduction

- Model Results
- Incentive regulation Examples
- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and
- Deferences

Costs

$$C(Q_j, R_j, I_j) = \sum_{od(s)} Q_{j,od(s)} \sum_{j' \in od(s)} \sum_{(a,b) \in R_{j',od(s)}} \delta \frac{Dist_{j',ab}}{I_{j',ab}^{Y}}$$

• Firm *j* chooses *I*_{*j*,*ab*} to minize its own costs, but does not take into account costs for other firms using its rails

Equilibrium

Chen (2023)

Network Industries

Paul Schrimpf

Introduction Model

Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and

Shum (2015)

References

- No congestion, constant marginal costs makes choice of \mathcal{R} given *p* and *I* a linear program
- Assumption of no cross *od* demand elasticity and no effect of $Q_{s,o'd'}$ on cost of $Q_{s,o,d}$ helps keep price computation fast
- Equilibrium may not be unique

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and

References

Demand

		OLS			IV	
Variables	(1)	(2)	(3)	(4)	(5)	(6)
Price	0.240^{***} (0.013)	-0.280^{***} (0.012)	-0.281^{***} (0.012)	-0.708^{***} (0.059)	-0.681^{***} (0.059)	-0.720^{**} (0.059)
Log Track Miles	$\begin{array}{c} 0.485^{***} \\ (0.016) \end{array}$	$\begin{array}{c} 0.364^{***} \\ (0.015) \end{array}$	0.334^{***} (0.016)	0.360^{***} (0.016)	0.358^{***} (0.016)	0.360^{***} (0.016)
Year Fixed Effect	Yes	Yes	Yes	Yes	Yes	Yes
o–d Market Fixed Effect	_	Yes	Yes	Yes	Yes	Yes
Firm Fixed Effect	-	_	Yes	Yes	Yes	Yes
Instruments						
BLP instruments	_	_	_	Yes	_	Yes
Predicted ΔHHI	_	_	_	_	Yes	Yes
First-stage F-statistic	-	-	-	11.18	10.05	11.17
Own price elasticity						
Mean	0.53	-0.62	-0.62	-1.57	-1.51	-1.60
Standard errors	0.28	0.33	0.33	0.83	0.80	0.85
Median	0.51	-0.60	-0.60	-1.51	-1.45	-1.53

Table 5: Results of Demand Estimation

Note: Demand estimates are based on 30,058 market–service–year observations in 1993, 1997, 2002, 2007. Figures in parentheses are standard errors. *** p<0.01, ** p<0.05, * p<0.1

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and

References

Cost parameters:

- η = cost of interchange
- $\delta = \text{scaling factor}$
- γ = economies of scope in maintenance (important for merger efficiency changes)
- Estimated by indirect inference / simulated method of moments

Costs

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable
television
regulation and
quality
Gregory S. Crawford and Matthew Shum (2007)
Crawford, Shcherbakov, and Shum (2015)

References

Cost Moment Fits

Table 6: Comparison of Data and Simulated Moments

	(1)	(2)	(3)
	Identification	Data	Simulated
	Identification	Moments	Moments
Average shipping price (per loaded car per mile)	pin down δ	\$0.65	\$0.65
Average difference of price between interconnecting route and non-interconnecting route (per loaded car per mile)	pin down η	\$0.26	\$0.24
Moments related to network measures m_1 (coefficient of degree centrality)	pin down γ,δ	-\$0.0014 (0.0008)	-\$0.0016 (0.0000)
m_2 (coefficient of betweenness centrality)	pin down γ,δ	-\$0.2984 (0.0094)	-\$0.3017 (0.0083)

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Cost Parameter Estimates

Table 7: Estimation Results for Cost Parameters

	Point Estimate	95% Confidence Interval
δ	1.2	[1.10, 1.29]
η	217	[155, 279]
γ	0.17	[0.14, 0.20]

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentiv

Examples

Cable television regulation and quality Gregory S. Crawford

and Matthew Shur (2007) Crawford, Shcherbakov, and Shum (2015)

References

Implied Merger Effects

Table 8: Average Merger Gains

	Baseline	Unpacking the Black Box					
Percentage Change in:	(1) Distance + Interchange Cost + Economies of Scope $(\delta_0, \eta_0, \gamma_0)$	(2) Distance $(\delta_0, 0, 0)$	(3) Distance + Interchange Cost $(\delta_0, \eta_0, 0)$	(4) Distance + Economies of Scope $(\delta_0, 0, \gamma_0)$			
Price	-8.8%	-1.4%	-2.8%	-3.8%			
Cost	-12.9%	-1.9%	-3.4%	-7.2%			
Markup	7.2%	0.7%	0.7%	6.9%			

Paul Schrimpf

Chen (2023)

Introduction Model Results

- nesures
- Incentive regulation Examples
- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Mergers change resource allocation

• Example: Burlington Northern & Santa Fe merged to BNSF

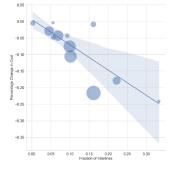
(a) BNSF Network (b) Changes in Resources, BNSF (c) Changes in Resources, UP

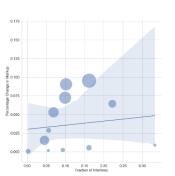
Figure 5: Changes in Allocation of Resources After ATSF–BN Merger

Notes: Panel (a) shows the combined network of the two merging firms. The purple areas in the northwest represent the network solely owned by BN, while the green areas in the south represent the network solely owned by SP. The yellow areas indicate the overlapping region of the two networks. Panel (b) shows the changes in resource allocation for BNSF's network after the merger, while Panel (c) shows the changes in resource allocation for UP's network. In Panels (b) and (c), the solid blue line represents increased allocation after merger, while the dashed yellow line represents decreased allocation. The line thickness represents the magnitude of change. Changes in allocation are calculated by comparing the equilibrium allocation of resources post merger with that pre merger.

Paul Schrimpf

Introduction Model


Results


Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

(a) Cost Changes and Degree of Complementarity

(b) Markup Changes and Degree of Complementarity

Figure 6: Degree of Complementarity and Average Merger Effects

Paul Schrimpf

Chen (2023)

Introductio Model Results

Incentive regulation

Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Section 2

Incentive regulation

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation

Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

• This section is based largely on Joskow (2014)

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation

Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Downsides of rate of return regulation

- Gives no incentive to control costs
 - Overinvestment
 - Too little managerial effort
- Gives no incentive for high quality
 - In transportation networks, quality pprox lack of congestion
 - Uniformly applied rate of return does not give incentive about where to invest in network, e.g. http://faculty.arts.ubc.ca/pschrimpf/565/gasSlides.pdf

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation

Examples

- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Incentive regulation 1

- Incentive regulation : regulate prices such that regulated firm is the residual claimant on cost reductions and/or quality improvements
- If regulator knows the costs of an efficiently run firm, set prices such that revenues of any firm equals the costs of an efficient one

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation

Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

• Allow revenues, R = a + (1 - b)C, where C = realized costs

• Rate of return / cost of service : a = 0, b = 0, so R = C.

Theoretical framework

- Fixed price / price cap : $a = C^*$, b = 1
- Sliding scale : 0 < *a* < *C**, 0 < *b* < 1
- C depends on type of firm and managerial effort
 - Rate of return pricing gives no incentive for cost reducing effort
 - Fixed price fully incentives effort, but for all firms to be viable, *C*^{*} must be set to cost of the highest cost type firm
 - Faced with distribution of cost types, optimal for regulator to offer menu of contract such that lowest cost firm chooses fixed price, others sliding scale getting closer to rate of return as cost type increases

Practical issues

Chen (2023)

Network Industries

Paul Schrimpf

Introduction Model Results

Incentive regulation

- Examples
- Cable television regulation an quality
- Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

• How does regulator know C*?

- *C* from cost accounting data like in FERC Form 2 for natural gas pipelines
- *C** typically based on either historical performance + expected improvements, and/or performance of similar firms
- *C*^{*} usually reset periodically ("ratchet") as regulator gains information
- Should a menu be used?
 - Explicit menus rarely offered, but negotiations between firms and regulator could be serving a similar purpose

Examples 1

Network Industries

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation

- Examples
- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

- England 1855-1930ish gas distribution : sliding scale mechanism, see Hammond, Johnes, and Robinson (2002)
- US electric power : some states adopted rate freezes and price caps since mid-1990s
- Price cap mechanisms : since mid 1980s UK, New Zealand, Australia, and Latin America electric, gas, water, and telecom ; US telecom
 - Initial price cap chosen, then each year changes by inflation minus target productivity growth

$$p_{t+1} = p_t(1 + RPI - x)$$

• Periodic ratchets tradeoff incentives, rent extraction, and firm viability constraints

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation

Examples

- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

UK electric distribution

- OFGEM Office of Gas and Electricity Markets
- Operating costs price cap with 5 year ratchet measure of C* relatively easy and well-understood
- Capital costs at price review, next price cap depends on future capital costs
 - Difficult to have efficient benchmark for capital costs because of variation in time and space
 - OFGEM offers menu of sliding scale contracts
 - Lower capital allowance with higher powered incentive and higher expected return on investment
- Price also affected by reaching quality of service targets

DNO: PB Power ratio	100	105	110	115	120	125	130	135	140
Efficiency incentive	40%	38%	35%	33%	30%	28%	25%	23%	20%
Additional income	2.5	2.1	1.6	1.1	0.6	-0.1	-0.8	-1.6	-2.4
As pretax rate of return	0.200%	0.168%	0.130%	0.090%	0.046%	-0.004%	-0.062%	-0.124%	-0.192%
			Rev	vards and pena	lties				
Allowed expenditure	105	106.25	107.5	108.75	110	111.25	112.5	113.75	115
Actual exp.									
70	16.5	15.7	14.8	13.7	12.6	11.3	9.9	8.3	6.6
80	12.5	11.9	11.3	10.5	9.6	8.5	7.4	6.0	4.6
90	8.5	8.2	7.8	7.2	6.6	5.8	4.9	3.8	2.6
100	4.5	4.4	4.3	4.0	3.6	3.0	2.4	1.5	0.6
105	2.5	2.6	2.5	2.3	2.1	1.7	1.1	0.4	-0.4
110	0.5	0.7	0.8	0.7	0.6	0.3	-0.1	-0.7	-1.4
115	-1.5	-1.2	-1.0	-0.9	-0.9	-1.1	-1.4	-1.8	-2.4
120	-3.5	-3.1	-2.7	-2.5	-2.4	-2.5	-2.6	-3.0	-3.4
125	-5.5	-4.9	-4.5	-4.2	-3.9	-3.8	-3.9	-4.1	-4.4
130	-7.5	-6.8	-6.2	-5.8	-5.4	-5.2	-5.1	-5.2	-5.4
135	-9.5	-8.7	-8.0	-7.4	-6.9	-6.6	-6.4	-6.3	-6.4
140	-11.5	-10.6	-9.7	-9.0	-8.4	-8.0	-7.6	-7.5	-7.4
Where, for example:	(top-left co (bottom-ri		16.5 = (105 - 70) -7.4 = (115 - 140)						

Table 5.2 Sliding scale matrix for capital expenditure allowance

Source: OFGEM (2004d, 87).

Paul Schrimpf

Chen (2023 Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

National Grid Company

- Electricity transmission in England and Wales
- Price cap with 5 year ratchets
- There is only one firm, so C* determined by historical data and engineering studies

" there are many similarities here with the way cost-of-service regulation works in practice in the United States. Indeed, perhaps the greatest difference is philosophical. OFGEM takes a view that recognizes that by providing performance based incentives for regulated utilities to reduce costs, it can yield consumer benefits in the long run by making it profitable for the firm to make efficiency improvements. If the firm overperforms against the target, consumers eventually benefit at the next price review. It has generally (though not always) been willing to allow the regulated firms to earn significantly higher returns than their cost of capital when these returns are achieved from cost savings beyond the benchmark, knowing that the next "ratchet" will convey these benefits to consumers. Under traditional US regulation, the provision of incentives through regulatory lag is more a consequence of the impracticality of frequent price reviews and changing economic conditions than by design."

Paul Schrimpf

Empirical work

Chen (2023)

Introduction Model Results

Incentive regulation

- Examples
- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

- Far more theory than empirical work
- Little to no structural empirical work about impact of incentive regulation
- Mostly case studies and some reduced form
- See Joskow (2014) for references

Paul Schrimpf

Chen (2023)

Model Results

Incentive regulation

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Section 3

Cable television regulation and quality

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

"Monopoly Quality Degradation and Regulation in Cable Television" Gregory S. Crawford and Matthew Shum (2007)

Introduction

Chen (2023)

Network Industries

Paul Schrimpf

- Introduction Model Results
- Incentive regulation Examples
- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007)
- Crawford, Shcherbakov, and Shum (2015)
- References

• Firms with market power

- Charge higher prices
- If quality endogenous, provide lower quality
- Usual approach to measuring market power wrt prices : BLP - estimate demand and use optimality condition for prices to recover marginal costs
- This paper : optimality conditions for quality choice to measure quality degradation
- Relate variation in quality degradation to variation in local regulatory oversight

Paul Schrimpf

Chen (2023)

Introductio Model

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, an Shum (2015)

References

Quality choice model 1

- Mussa and Rosen (1978)
- Consumer types $t_0 < t_1 < t_2$, probabilities f_j
- Firm chooses two qualities and prices:

$$\max_{p,q} \sum_{i=1}^{2} f_i [P(q_i) - C(q_i)]$$

s.t.

$$q_i = rg \max q \in \{q_1, q_2\} v(q, t_i) - P(q)$$
 $v(q_i, t_i) - P(q_i) \ge 0$
 $q_i \ge \underline{q}$

• FOC:

$$v_q(q_1, t_1) - C_q(q_1) + \lambda = \frac{1 - F_1}{f_1} [v_q(q_1, t_2) - v_q(q_1, t_1)] \text{ and } v_q(q_2, t_2)$$

Paul Schrimpf

Chen (2023)

Introductic Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

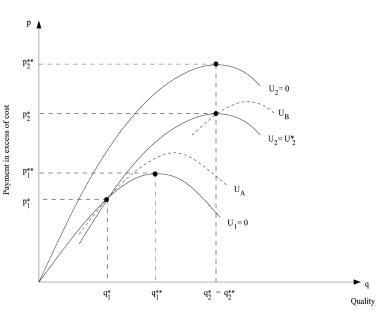


Figure 1. Quality degradation with two types adapted from Maskin and Riley (1984)

Paul Schrimpf

Data

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

- US cable systems in 1995
- Quality = basic vs expanded basic service
- Regulation : 1992 cable act required price per channel reduction by 17% if local franchise authority or consumers complained to FCC

Paul Schrimpf

Chen (2023)
Introduction
Model
Results
Incentive

Examples

Cable television regulation and quality Gregory S. Crawford and Matthew Shum

and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

Table 1 Sample Statistics: Selected Characteristics

Variable	All Markets	Three-Good Markets	Two-Good Markets	One-Good Markets
Expanded basic services:				
Any	.30	1.00	1.00	.00
One	.23	.00	1.00	.00
Two	.07	1.00	.00	.00
Market shares:				
W_3	.66	.47	.61	.70
W2	.06ª	.12	.04	
w1	.04ª	.04		
Prices:				
<i>p</i> ₃	20.40	25.64	22.69	19.13
P2	14.32 ^a	21.86	12.05	
p_1	16.78 ^a	16.78		
Programming:				
Top 40 cable networks:				
On service 3	16.55	22.29	20.85	14.57
On service 2	9.14 ^a	18.15	6.44	
On service 1	11.94 ^a	11.94		
Broadcast networks:				
Over the air	2.54	3.19	2.85	2.37
On cable	5.74	6.57	6.51	5.40
Other networks on basic	14.36	10.85	13.18	15.09
System characteristics:				
Homes passed (1,000s)	5.11	9.54	12.19	2.34
Channel capacity	38.87	43.21	43.55	36.91
Market characteristics:				
Income:				
Mean	28.83	28.27	30.11	30.15
Standard deviation	24.61	24.15	25.52	26.21
Skew	2.69	2.70	2.64	2.68
Age:	107	-11.0	3101	2100
Mean	36.22	36.36	35.75	36.34
Standard deviation	23.20	23.36	22.74	23.03
Skew	.16	.15	.18	.15
Household size:				.15

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality Gregory S. Crawford and Matthew Shum

Crawford, Shcherbakov, a Shum (2015)

(2007)

References

Table 2 Top 15 Cable Programming Networks

Rank	Network	Subscribers (millions)	Programming Format
1	TBS Superstation	77.0	General interest
2	Discovery Channel	76.4	Nature
3	ESPN	76.2	Sports
4	USA Network	75.8	General interest
5	C-SPAN	75.7	Public affairs
6	TNT	75.6	General interest
7	FOX Family Channel	74.0	General interest/kids
8	TNN (The Nashville Network)	74.0	General interest/countr
9	Lifetime Television	73.4	Women's
10	CNN (Cable News Network)	73.0	News
11	A&E	73.0	General interest
12	The Weather Channel	72.0	Weather
13	QVC	70.1	Home shopping
14	The Learning Channel (TLC)	70.0	Science
15	MTV: Music Television	69.4	Music

Note. Data on network subscribers are from National Cable and Telecommunications Association, Top 20 Cable Programming Networks—as of December 2006 (http://www.ncta.com/ContentView.aspx ?contentID = 74). Data on programming formats from individual network promotional material are from National Cable and Telecommunications Association, Cable Networks (http://www.ncta.com/Organiza-tions.aspx?type=orgtyp2&contentID = 2907) or industry sources.

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, an Shum (2015)

References

Table 3 Preliminary Evidence of Quality Degradation

		Three-Good Markets		Good kets
Total Prices/Channels	Mean	Difference	Mean	Difference
p ₃ /channel	1.06 (.03)	04 (.01)	1.10 (.03)	61 (.06)
p ₂ /channel	1.10 (.03)	13 (.02)	1.72 (.07)	
p ₁ /channel	1.23 (.04)			
N	72		239	

Note. Reported are the average price per channel for each offered cable service. Channels include all top 40 satellite channels and, for the lowest quality service, all major broadcast networks. Ratios are formed with total price and total channels. Values in the Difference columns are the difference in price per channel in that row and the row that follows. The cable system in one two-good market included no satellite or broadcast networks in its lowest quality service. Standard errors are in parentheses.

Estimation

Network Industries

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, an Shum (2015)

- Functional forms u(q, t) = tq p, $C(q) = q^2/2$
 - Implies socially optimal $q_i^{**} = t_i$
- Market shares $= \hat{f}_i$
- Prices $p_i = t_i q_i u_i(q_i)$
- Quality $q_i = \begin{cases} t_n & \text{if } i = n \\ t_i = \frac{1 F_i}{f_i} (t_{i+1} t_i) & \text{otherwise} \end{cases}$
- Utilities $u_i = \sum_{i'=1}^{i-1} (t_{i'+1} t_{i'})q_{i'}$, $u_1 = 0$

Paul Schrimpf

Gregory S. Cra and Matthew (2007)

	Variable	Three-Good Markets	Two-Good Markets	One-Good Markets
3)	Net type distribution:			
	\overline{f}_3	.47	.61	.70
	$rac{f_3}{f_2} \ ar{f_1}$.12	.04	
	$\overline{f_1}$.04		
	f_0	.37	.35	.30
	$\frac{f_0}{\underline{t}_3}$ $\frac{t_2}{\underline{t}_1}$	5.15	4.77	4.35
	\overline{t}_2	4.99	4.65	
	$\overline{t_1}$	4.90		
and	Qualities:			
	q_3	5.15	4.77	4.35
ford	q_2	4.43	2.57	
um	q_1	3.42		
	% Degradation:			
d	$(\overline{t}_3 - q_3)/\overline{t}_3$.00	.00	.00
	$(\overline{t}_2 - \overline{q}_2)/\overline{t}_2$.11	.45	
	$(\bar{t}_1 - \bar{q}_1)/\bar{t}_1$.30		
	Price/quality ratio			
	q_{3}/p_{3}	.20	.21	.23
	q_2/p_2	.21	.21	
	q_1/p_1	.21		
	N	72	240	730

Note. Parameters of net type distribution are obtained using the procedure in Section 4.2. Quality measures are calculated using equation (12). Percentage of degradation evaluated at cut types is defined as the marginal type just inclined to purchase that quality.

Table 5

Recovered Parameter Values and Implied Qualities

Paul Schrimpf

Gregory S. Cr and Matthew (2007)

Table 6

Interpreting Quality Measures

mpi			
23)	Variable	Estimate	Implied Mean WTP (\$)
2 <i>3)</i>	WTBS	.53 (.03)	2.39
	Discovery	.16 (.04)	.73
	ESPN	.94 (.04)	4.22
n	USA	.33 (.03)	1.49
	CSPAN	.08 (.03)	.34
	TNT	13 (.04)	59
n n and	Family	.47 (.03)	2.13
munu	Nashville	.31 (.03)	1.38
rawford v Shum	Lifetime	.02 (.03)	.09
	CNN	.21 (.03)	.94
, and	A&E	.22 (.03)	1.01
	Weather	.02 (.03)	.10
es	QVC	.57 (.04)	2.57
	Learning	.15 (.04)	.67
	MTV	.08 (.03)	.37
	Other networks	.04 (.00)	.18

Note. Coefficient estimates from regression of recovered quality levels on broadcast and cable programming variables. Reported are results for the top 15 cable networks listed in Table 2. The results are pooled across all markets and across all bundles within a market. Standard errors are in parentheses. The second column is from the authors' calculations; the estimated willingness

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, ar Shum (2015)

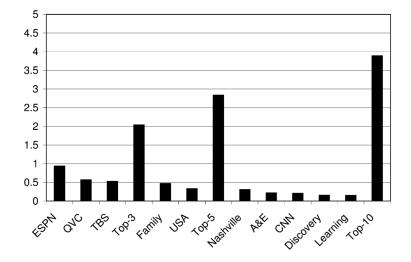


Figure 3. Recovered quality levels for top-networks results from Table 6

Paul Schrimpf

Chen (2023

Model Results

ncentive regulation _{Examples}

Cable television regulation an quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, an Shum (2015)

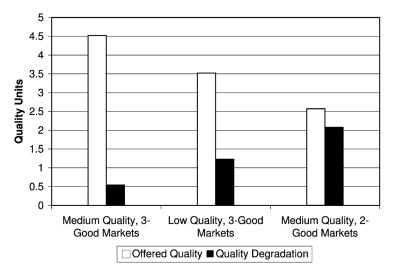


Figure 4. Quality and quality degradation by market results from Table 5

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, an Shum (2015)

References

Table 7 Determinants of Cable Service Quality

	0	rdinary Least Squa	res	Instrumental Variables		
Variable	All Qualities	High Quality	Low and Medium Qualities	All Qualities	High Quality	Low and Medium Qualities
System characteristics:						
Homes passed	2.600 (1.080)	1.790 (.853)	3.010 (1.560)	-3.020(5.470)	1.810 (2.400)	-5.430(9.450)
Channel capacity	.007 (.001)	.010 (.001)	.005 (.002)	.000 (.007)	.010 (.003)	005 (.011)
Market characteristics:						
Mean income	.002 (.004)	003(.003)	.004 (.006)	.021 (.019)	003 (.008)	.034 (.033)
Skew of income	088 (.041)	018(.032)	123 (.058)	164 (.101)	017 (.044)	237 (.174)
Mean age	.068 (.017)	.030 (.013)	.087 (.024)	.092 (.037)	.030 (.016)	.123 (.065)
Standard deviation of age	165 (.030)	080(.024)	208 (.044)	085 (.091)	080 (.040)	088 (.157)
Mean household size	.275 (.128)	.143 (.101)	.341 (.184)	.449 (.279)	.143 (.123)	.602 (.482)
Skew of household size	.410 (.073)	.144 (.058)	.543 (.105)	.180 (.247)	.145 (.109)	.198 (.426)
Regulatory characteristic: certification	.522 (.057)	.147 (.045)	.710 (.082)	5.271 (4.327)	.127 (1.901)	7.843 (7.469)
N	1,426	1,042	384	1,426	1,042	384

Note. Instrumental variables regressions use share of primary county population living in rural areas to instrument for regulatory certification. Standard errors are in parentheses.

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, ar Shum (2015)

References

Table 8 Further Effects of Certification

	Quality Degradation, Low	Number of	Total	Price	Quality/I	Price Ratio
and Medium Ser		Services, All Qualities	High Quality	Low and Medium Qualities	High Quality	Low and Medium Qualities
System characteristics:						
Homes passed	.808 (.394)	3.700 (1.060)	15.200 (7.460)	14.700 (7.630)	032(.046)	.391 (.099)
Channel capacity	.003 (.001)	.004 (.001)	.082 (.010)	.025 (.010)	001(.000)	.000 (.000)
Market characteristics:						
Mean income	002(.002)	.001 (.004)	011 (.028)	.027 (.029)	.000 (.000)	.000 (.000)
Skew of income	.038 (.030)	059 (.040)	179 (.280)	632 (.286)	.000 (.002)	006(.004)
Mean age	007(.010)	.049 (.016)	.289 (.116)	.429 (.118)	001(.001)	.005 (.002)
Variance of age	.001 (.019)	129 (.030)	741 (.209)	-1.018 (.214)	.003 (.001)	014(.003)
Mean household size	088(.086)	.155 (.125)	1.383 (.882)	1.732 (.902)	006 (.005)	.016 (.012)
Skew of household size	118(.047)	.286 (.071)	1.077 (.503)	2.597 (.515)	005 (.003)	.031 (.007)
Regulatory characteristic: certification	093 (.026)	.344 (.056)	1.177 (.394)	3.547 (.403)	006 (.002)	.035 (.005)
N	384	1,042	1,042	384	1,042	384

Note. Reported are coefficient estimates from ordinary least squares regressions. Parameters are pooled across services given in the column headings, with the dependent variables. Standard errors are in parentheses.

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

"The Welfare Effects of Endogenous Quality Choice in Cable Television Markets" Crawford, Shcherbakov, and Shum (2015)

Introduction

Chen (2023)

Network Industries

Paul Schrimpf

- Introduction Model Results
- Incentive regulation Examples
- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007)
- Crawford, Shcherbakov, and Shum (2015)
- References

Firms with market power

- Charge higher prices
- If quality endogenous, provide non-optimal quality
- Compared with Gregory S. Crawford and Matthew Shum (2007)
 - More flexible preferences
 - Marginal social benefit of quality can be higher or lower than marginal cost
 - Find quality is distorted upward
- Decompose welfare loss from monopoly into price distortion and quality distortion

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

Quality markups

• Inverse demand
$$P(\underbrace{s}_{\text{quantity}}, \underbrace{q}_{\text{quality}})$$

- Cost c(q)s
- Social planner

$$\max_{s,q}\int_0^s P(s',q)ds'-c(q)s$$

[s]:
$$P(s^{SP}, q^{SP}) = c(q^{SP})$$

[q]: $\int_{0}^{s^{SP}} P_q(s', q^{SP}) ds' = s^{SP} c_q(q^{SP})$

- Price markup PM(s, q) = P(s, q) c(q)
- Quality markup $QM(s, q) = \int_0^s P_q(s', q^{sp})ds' sc_q(q)$

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

Welfare effect decomposition

- Total surplus $TS(s, q) = \int_0^s P(s', q) ds' c(q)s$
- Total welfare loss $\Delta TS(s, q) = TS(s^{SP}, q^{SP}) TS(s, q)$
- Given quality, p and s one-to-one, so let TS(p, q) = TS(s(p, q), q)
- Welfare loss from market power over quality

$$MPQ = TS(p, q^{SP}(p)) - TS(p, q)$$

• Welfare loss from market power over price

$$MPP = TS(p^{SP}, q^{SP}) - TS(p, q^{SP}(p))$$

•
$$\Delta TS(p,q) = MPP(p,q) + MPQ(p,q)$$

Paul Schrimpf

Data

Chen (2023)

- Introduction Model Results
- Incentive regulation Examples
- Cable television regulation and quality
- Gregory S. Crawford and Matthew Shum (2007)
- Crawford, Shcherbakov, and Shum (2015)

- Annual data on 3931 cable systems from 1997-2006
 - Prices and market shares of cable and satellite tiers
- Quality = sum of average cost of channels offered

Paul Schrimpf

Chen	(2023)

Model

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

	Mean	\mathbf{StdDev}	Min	Max
Periods and Products				
Time periods	2.1	1.2	1	9
Cable products	1.5	0.7	1	3
Satellite products	5.2	1.4	3	6
Market shares				
s^c	0.54	0.19	0.05	0.90
8 ⁸	0.15	0.12	0.01	0.88
Prices				
Cable				
p_{Low}^c	\$20.44	\$7.71	\$2.68	\$81.86
p^{c}_{Med}	\$32.77	\$14.59	\$7.88	\$136.30
p_{High}^{c}	\$60.28	\$23.79	\$16.90	\$291.08
Satellite				
p_{Low}^s	\$21.69	\$9.33	\$14.44	\$39.24
p_{Med}^s	\$27.15	\$9.06	\$19.26	\$43.61
p_{High}^{s}	\$45.95	\$22.94	\$28.89	87.22
Quality				
Cable				
q_{Low}^c	3.09	1.81	0.30	13.13
q_{Med}^c	5.76	2.63	0.71	16.86
q_{High}^{c}	9.11	3.45	2.34	19.02
Satellite				
q_{Low}^s	5.12	3.49	1.78	11.73
q^s_{Med}	6.48	3.16	3.30	12.67
q_{High}^{s}	10.77	6.51	5.65	27.88
Other Vars				
Miles of plant	0.160	0.560	0.000	17.690
Channel canacity	44.9	20.2	5	542

Table 2: Data summary statistics, 1997-2006

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

Table 3: Exploratory evidence of quality degradation

	Three-Goo	od Markets	Two-Good Markets		
	Mean	Diff	Mean	\mathbf{Diff}	
Prices-per-channel					
$p_2/channels_2$	1.28(0.64)	0.46(0.34)	1.38(0.82)	-0.31(1.50)	
$p_1/channels_1$	0.81(0.40)	-0.42(0.87)	1.69(1.50)		
$p_0/channels_0$	1.23(1.04)				
Prices-per-weighted-channel					
p_2/q_2	7.27(2.74)	2.03(1.74)	6.60(2.39)	-4.26(10.02)	
p_1/q_1	5.24(2.21)	-5.11(7.52)	10.86 (10.20)		
p_0/q_0	$10.34 \ (8.21)$				
Observations	1,3	360	3,727		

Notes: Reported are the average price per channel and price per weighted channel for each offered cable service in our estimation sample. Weights are given by the national average input cost for that channel in the relevant year. Values in the "Difference" columns are the difference in price per channel in that row and the row that follows. Standard errors are in parentheses.

Model

Network Industries

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

• Consumers : choose among cable, satellite, product

$$u_{ijgn} = \alpha_g + (a_{i0} + a_y I_n + a_h H_n + a_u U_n) p_{jgn} + (b_{i0} + b_y I_n + b_h H_n + b_u U_n) q_{jgn} + \xi_{gn} + \epsilon_{ijgn}$$

- Supply :
 - assume satellite price is fixed (wrt counterfactual prices and qualities of cable systems)
 - FOC for cable systems :

$$[p]: \qquad s_{jcn} + \sum_{r} (p_{rcn} - mc_{rcn}) \frac{\partial s_{rcn}}{\partial p_{jcn}} = 0$$
$$[q]: \qquad -\frac{\partial mc_{jcn}}{\partial q_{jcn}} s_{jcn} + \sum_{r} (p_{rcn} - mc_{rcn}) \frac{\partial s_{rcn}}{\partial q_{jcn}} = 0$$

• Functional form :

$$mc_{jcn} = \exp\left(z_{jn}\theta_{s0} + v_{0jn} + (z_{jn}\theta_{s1} + v_{1jn})\right)$$

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

Moment conditions and instruments

- $E[\xi_{gn}|Z_{gn}] = 0$
- Average price and quality of other local cable systems owned by same multi-system operator
- Total number of subscribers of multi-system operator (shifts bargaining power)
- Average channel capacity of multi-system
- Total length of coaxial lines

Paul Schrimpf

Chen (2023)

Introductio Model

Incentive regulation

Cable television regulation and quality

and Matthew Shurr (2007) Crawford.

Shcherbakov, and Shum (2015)

References

Table 4: Estimation results

novemeter	(1)	(2)
parameter	coef.	s.e.	coef.	s.e.
price coefficient, α_{ip}				
mean	-0.673	(0.001)	-0.682	(0.023)
income			-0.418	(0.091)
h-size			0.396	(0.062)
urban			-0.173	(0.017)
sigma	0.102	(0.006)	0.122	(0.013)
quality coefficient, α_{iq}				
mean	1.108	(0.032)	1.225	(0.083)
income			-0.337	(0.413)
h-size			0.221	(0.144)
urban			0.331	(0.184)
sigma	0.310	(0.007)	0.266	(0.007)
$corr(a_{ip}, a_{iq})$	-0.545	(0.032)	-0.481	(0.090)
demand t-dummies	Yes		Yes	
supply t-dummies	Yes		Yes	

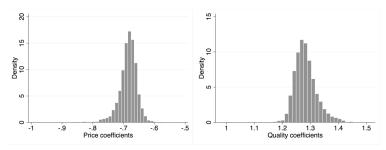
Notes: Reported are estimation results for key parameters from our structural model of demand, price, and quality choice. There are 12,214 observations, where an observation is a cable system-product-year. Full estimation results can be found in Appendix C. Specification (1) does not include market demographics in preferences, while specification (2) does. Instruments include all those described in Section 5.3; results using each variable as its own instrument (OLS-type) and a minimal set of instruments based on ownership (MSO) measures (min-IV) are presented in Appendix A. Standard errors are in parentheses.

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples


Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

Figure 3: Distributions of mean price and quality parameters across markets.

Notes: Reported are the estimated distributions of mean price and quality parameters across markets implied by the parameter estimates reported in Table 4.

Paul Schrimpf

Chen ((2022)
Client	(2023)

Introduction Model Results

Incentive regulation

Cable

regulation a quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

Table 5: Summary statistics for the supply side estimates.

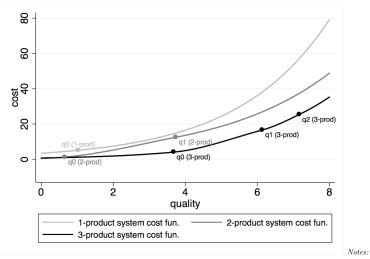
system type	variable	mean	p50	min	max	sd
1-product	mc_0	16.81	17.15	0.03	46.79	5.7
	$\partial mc/\partial q_0$	1.90	1.90	1.03	2.96	0.1
2-product	mc_0	13.36	11.44	0.00	70.42	9.4
	mc_1	25.47	22.53	1.50	96.06	11.9
	$\partial mc/\partial q_0$	1.79	1.84	0.07	2.41	0.2
	$\partial mc/\partial q_1$	13.49	7.41	0.66	114.75	13.
3-product	mc_0	12.88	12.16	0.06	60.46	8.5
	mc_1	28.61	26.31	2.20	99.36	12.
	mc_2	47.80	45.12	11.46	119.67	17.
	$\partial mc/\partial q_0$	1.77	1.83	0.12	2.40	0.2
	$\partial mc/\partial q_1$	4.03	3.64	0.27	14.31	1.8
	$\partial mc/\partial q_2$	20.79	16.73	2.04	129.47	14.

Paul Schrimpf

Chen (2023)

Model Results

Incentive regulatior


Cable television

regulatior quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

Reported are the estimated marginal cost functions by system type (1, 2, or 3-product) and by product within each system type implied by the parameter estimates reported in Table 5.

Figure 4: Estimated marginal cost functions by system type

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

Table 6: Estimated Price and Quality Markups

		Price 1	Markups	Quality Markups		
Market Type	Obs	Mean	\mathbf{StdDev}	Mean	StdDev	
One-product markets	7,105	0.264	0.139	0.226	0.230	
Two-product markets						
Low-quality products	3,615	0.320	0.202	0.426	0.541	
High-quality products	3,615	0.226	0.100	0.014	0.049	
Three-product markets						
Low-quality products	1,327	0.339	0.188	0.362	0.396	
Medium-quality products	1,327	0.174	0.101	0.009	0.026	
High-quality products	1,327	0.210	0.095	0.000	0.001	

Notes: Reported are estimated price and quality markups from our baseline estimation results (Table 4, Column (2)). Price markups are reported as a percentage of price, $(p_j - mc_j)/p_j$. Quality markups are reported as a percentage of the (dollar-denominated) utility from the quality offered on that product, $POC^{SP}[q_j](\frac{\alpha_{ens}}{\alpha_{ens}}q_{jn})$, where $FOC^{SP}[q_j]$ is the social planner's first-order condition for q_j , defined in equation (33) above. Estimated values are averaged across markets by market type (1, 2, or 3-product markets) and product type within market type.

Paul Schrimpf

Chen	(2022)
Chen	(2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

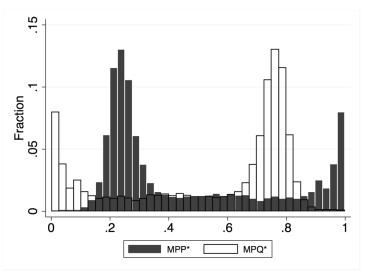
Table 7: Welfare effects of market	power over quality (and price)
------------------------------------	--------------------------------

	$\begin{tabular}{ c c c c }\hline \hline Column A: \\ \hline Market Power \\ over Quality \\ (MPQ) \\ \hline (p^{Obs}, q^{Obs}) \\ \hline vs \\ (p^{Obs}, q^{S,P}) \\ \hline \end{tabular}$		$\begin{tabular}{ c c c c }\hline \hline Column B: \\ \hline Market Power \\ over Price \\ (MPP) \\ \hline (p^{Obs}, q^{SP}) \\ \hline vs \\ (p^{SP}, q^{SP}) \\ \hline \end{tabular}$		Column C:	
					$\begin{array}{c} \textbf{Total} \\ \textbf{Welfare Effect} \\ \hline (p^{Obs}, q^{Obs}) \\ \textbf{vs} \\ (p^{SP}, q^{SP}) \end{array}$	
	Mean	\mathbf{StdDev}	Mean	\mathbf{StdDev}	Mean	\mathbf{StdDev}
Prices						
Low-quality products	-	_	-0.330	0.180	-0.330	0.180
Medium-quality products		_	-0.590	0.220	-0.590	0.220
High-quality products		_	-0.740	0.130	-0.740	0.130
Qualities						
Low-quality products	0.550	0.720	_		-0.230	0.910
Medium-quality products	0.070	0.110	_		-0.370	0.410
High-quality products	0.070	0.040	_		-0.550	0.260
Welfare						
Consumer surplus	0.430	0.290	0.540	0.420	1.160	0.520
Profit	-0.330	0.240	-1.000		-1.000	
Total Surplus	0.100	0.060	0.070	0.050	0.170	0.070
Share of welfare						
Due to Market Power over Price (MPP)					0.460	0.290
Due to Market Power over Quality (MPQ)					0.540	0.290

Paul Schrimpf

Introduction Model Results

Incentive regulation Examples


Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007)

Crawford, Shcherbakov, and Shum (2015)

References

Figure 5: Histograms for MPP^* and MPQ^*

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Chen, Yanyou. 2023. "Network Structure and Efficiency Gains from Mergers: Evidence from US Freight Railroads." Tech. rep., Working paper. URL https:

//yanyouchen.github.io/papers/chen_railroad.pdf.

Crawford, Gregory S, Oleksandr Shcherbakov, and Matthew Shum. 2015. "The welfare effects of endogenous quality choice in cable television markets." Working paper. URL https://dx.doi.org/10.2139/ssrn.2670428.

Gregory S. Crawford and Matthew Shum. 2007. "Monopoly Quality Degradation and Regulation in Cable Television." *The Journal of Law and Economics* 50 (1):181–219. URL https://doi.org/10.1086/508310.

Hammond, Christopher J., Geraint Johnes, and Terry Robinson. 2002. "Technical Efficiency under Alternative Regulatory Regimes: Evidence from the Inter-war British Gas Industry." *Journal of Regulatory Economics* 22 (3):251–270. URL https://doi.org/10.1023/A:1020818127738.

Paul Schrimpf

Chen (2023)

Introduction Model Results

Incentive regulation Examples

Cable television regulation and quality

Gregory S. Crawford and Matthew Shum (2007) Crawford, Shcherbakov, and Shum (2015)

References

Joskow, Paul L. 2014. Incentive Regulation in Theory and Practice: Electricity Distribution and Transmission Networks, book 5. University of Chicago Press, 291–344. URL http://www.nber.org/chapters/c12566.

Mussa, Michael and Sherwin Rosen. 1978. "Monopoly and product quality." *Journal of Economic theory* 18 (2):301–317.