Economics 326
Methods of Empirical Research in Economics

Lecture 16: Large sample results: Consistency

Vadim Marmer
University of British Columbia

March 29, 2011
Why we need the large sample theory

We have shown that the OLS estimator $\hat{\beta}$ has some desirable properties:

- $\hat{\beta}$ is unbiased if the errors are strongly exogenous: $E(U|X) = 0$.
- If in addition the errors are homoskedastic then $\text{Var}(\hat{\beta}) = s^2 / \sum_{i=1}^{n} (X_i - \bar{X})^2$ is an unbiased estimator of the conditional variance of the OLS estimator $\hat{\beta}$.
- If in addition the errors are normally distributed (given X) then $T = (\hat{\beta} - \beta) / \sqrt{\text{Var}(\hat{\beta})}$ has a t distribution which can be used for hypotheses testing.
Why we need the large sample theory

- If the errors are only weakly exogenous:
 \[E(X_i U_i) = 0, \]
 the OLS estimator is in general biased.

- If the errors are heteroskedastic:
 \[E(U_i^2 | X_i) = h(X_i), \]
 the "usual" variance formula is invalid; we also do not have an unbiased estimator for the variance in this case.

- If the errors are not normally distributed conditional on \(X \) then \(T \)- and \(F \)-statistics do not have \(t \) and \(F \) distributions under the null hypothesis.

- The asymptotic or large sample theory allows us to derive approximate properties and distributions of estimators and test statistics by assuming that the sample size \(n \) is very large.
Convergence in probability and LLN

Let θ_n be a sequence of random variables indexed by the sample size n. We say that θ_n converges in probability if

$$\lim_{n \to \infty} P \left(|\theta_n - \theta| \geq \varepsilon \right) = 0 \text{ for all } \varepsilon > 0.$$

We denote this as $\theta_n \to_p \theta$ or $p \lim \theta_n = \theta$.

An example of convergence in probability is a Law of Large Numbers (LLN):

Let X_1, X_2, \ldots, X_n be a random sample such that $E \left(X_i \right) = \mu$ for all $i = 1, \ldots, n$, and define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$. Then, under certain conditions,

$$\bar{X}_n \to_p \mu.$$
Let X_1, \ldots, X_n be a sample of independent identically distributed (iid) random variables. Let $E X_i = \mu$. If $\text{Var} (X_i) = \sigma^2 < \infty$ then

\[\bar{X}_n \rightarrow_p \mu. \]

In fact when the data are iid, the LLN holds if

\[E |X_i| < \infty, \]

but we prove the result under a stronger assumption that $\text{Var} (X_i) < \infty$.
Markov's inequality

- **Markov’s inequality.** Let W be a random variable. For $\varepsilon > 0$ and $r > 0$,

$$P (|W| \geq \varepsilon) \leq \frac{E|W|^r}{\varepsilon^r}.$$

- With $r = 2$, we have **Chebyshev’s inequality**. Suppose that $EX = \mu$. Take $W \equiv X - \mu$ and apply Markov’s inequality with $r = 2$. For $\varepsilon > 0$,

$$P (|X - \mu| \geq \varepsilon) \leq \frac{E|X - \mu|^2}{\varepsilon^2} = \frac{\text{Var}(X)}{\varepsilon^2}.$$

- Probability of observing an outlier (a large deviation of X from its mean μ) can be bounded by the variance.
Proof of the LLN

Fix $\varepsilon > 0$ and apply Markov’s inequality with $r = 2$:

$$ P \left(|\bar{X}_n - \mu| \geq \varepsilon \right) = P \left(\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| \geq \varepsilon \right) $$

$$ = P \left(\left| \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu) \right| \geq \varepsilon \right) $$

$$ \leq \frac{E \left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu) \right)^2}{\varepsilon^2} $$

$$ = \frac{1}{n^2 \varepsilon^2} \left(\sum_{i=1}^{n} E (X_i - \mu)^2 + \sum_{i=1}^{n} \sum_{j \neq i} E (X_i - \mu)(X_j - \mu) \right) $$

$$ = \frac{1}{n^2 \varepsilon^2} \left(\sum_{i=1}^{n} \text{Var} (X_i) + \sum_{i=1}^{n} \sum_{j \neq i} \text{Cov} (X_i, X_j) \right) $$

$$ = \frac{n\sigma^2}{n^2 \varepsilon^2} = \frac{\sigma^2}{n \varepsilon^2} \rightarrow 0 \text{ as } n \rightarrow \infty \text{ for all } \varepsilon > 0. $$
Let X_1, \ldots, X_n be a sample and suppose that

\begin{align*}
E(X_i) &= \mu \text{ for all } i = 1, \ldots, n, \\
Var(X_i) &= \sigma^2 \text{ for all } i = 1, \ldots, n, \\
Cov(X_i, X_j) &= 0 \text{ for all } j \neq i.
\end{align*}

Consider the mean of the average:

\begin{align*}
E(\bar{X}_n) &= E \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) \\
&= \frac{1}{n} \sum_{i=1}^{n} E(X_i) \\
&= \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{1}{n} n \mu = \mu.
\end{align*}
Averaging and variance reduction

Consider the variance of the average:

$$\text{Var} \left(\bar{X}_n \right) = \text{Var} \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right)$$

$$= \frac{1}{n^2} \text{Var} \left(\sum_{i=1}^{n} X_i \right)$$

$$= \frac{1}{n^2} \left(\sum_{i=1}^{n} \text{Var} \left(X_i \right) + \sum_{i=1}^{n} \sum_{j \neq i} \text{Cov} \left(X_i, X_j \right) \right)$$

$$= \frac{1}{n^2} \left(\sum_{i=1}^{n} \sigma^2 + \sum_{i=1}^{n} \sum_{j \neq i} 0 \right)$$

$$= \frac{1}{n^2} \cdot n \sigma^2 = \frac{\sigma^2}{n}.$$
Convergence in probability: properties

- **Slutsky’s Lemma.** Suppose that $\theta_n \xrightarrow{p} \theta$, and let g be a function continuous at θ. Then,

$$g(\theta_n) \xrightarrow{p} g(\theta).$$

- If $\theta_n \xrightarrow{p} \theta$, then $\theta_n^2 \xrightarrow{p} \theta^2$.
- If $\theta_n \xrightarrow{p} \theta$ and $\theta \neq 0$, then $1/\theta_n \xrightarrow{p} 1/\theta$.

- Suppose that $\theta_n \xrightarrow{p} \theta$ and $\lambda_n \xrightarrow{p} \lambda$. Then,
 - $\theta_n + \lambda_n \xrightarrow{p} \theta + \lambda$.
 - $\theta_n \lambda_n \xrightarrow{p} \theta \lambda$.
 - $\theta_n/\lambda_n \xrightarrow{p} \theta/\lambda$ provided that $\lambda \neq 0$.
Consistency

- Let $\hat{\beta}_n$ be an estimator of β based on a sample of size n.
- We say that $\hat{\beta}_n$ is a consistent estimator of β if as $n \to \infty$,

$$\hat{\beta}_n \to_p \beta.$$

- Consistency means that the probability of the event that the distance between $\hat{\beta}_n$ and β exceeds $\varepsilon > 0$ can be made arbitrary small by increasing the sample size.
Suppose that:

1. The data \(\{(Y_i, X_i) : i = 1, \ldots, n\} \) are iid.
2. \(Y_i = \beta_0 + \beta_1 X_i + U_i \), where \(E(U_i) = 0 \).
3. \(E(X_i U_i) = 0 \).
4. \(0 < Var(X_i) < \infty \).

Let \(\hat{\beta}_{0,n} \) and \(\hat{\beta}_{1,n} \) be the OLS estimators of \(\beta_0 \) and \(\beta_1 \) respectively based on a sample of size \(n \). Under Assumptions 1-4,

\[
\hat{\beta}_{0,n} \rightarrow_p \beta_0, \\
\hat{\beta}_{1,n} \rightarrow_p \beta_1.
\]

The key identifying assumption is Assumption 3: \(Cov(X_i, U_i) = 0 \).
Proof of consistency

Write
\[
\hat{\beta}_{1,n} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}_n) Y_i}{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2} = \beta_1 + \frac{\sum_{i=1}^{n} (X_i - \bar{X}_n) U_i}{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2} = \beta_1 + \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) U_i.
\]

We will show that
\[
\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) U_i \rightarrow_p 0,
\]
\[
\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \rightarrow_p \text{Var}(X_i),
\]

Since \(\text{Var}(X_i) \neq 0, \)
\[
\hat{\beta}_{1,n} = \beta_1 + \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) U_i \rightarrow_p \beta_1 + \frac{0}{\text{Var}(X_i)} = \beta_1.
\]
\[
\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) U_i \rightarrow_p 0
\]

By the LLN,

\[
\frac{1}{n} \sum_{i=1}^{n} X_i U_i \rightarrow_p E(X_i U_i) = 0,
\]

\[
\bar{X}_n \rightarrow_p E(X_i),
\]

\[
\frac{1}{n} \sum_{i=1}^{n} U_i \rightarrow_p E(U_i) = 0.
\]

Hence,

\[
\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) U_i = \frac{1}{n} \sum_{i=1}^{n} X_i U_i - \bar{X}_n \left(\frac{1}{n} \sum_{i=1}^{n} U_i \right) \rightarrow_p 0 - E(X_i) \cdot 0 = 0.
\]
\[
\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \rightarrow_p \text{Var} (X_i)
\]

- First,
\[
\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i^2 - 2\bar{X}_n X_i + \bar{X}_n^2)
\]
\[
= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - 2\bar{X}_n \frac{1}{n} \sum_{i=1}^{n} X_i + \bar{X}_n^2
\]
\[
= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - 2\bar{X}_n \bar{X}_n + \bar{X}_n^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}_n^2.
\]

- By the LLN, \(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \rightarrow_p E (X_i^2)\) and \(\bar{X}_n \rightarrow_p E X_i\).
- By Slutsky’s Lemma, \(\bar{X}_n^2 \rightarrow_p (E X_i)^2\).
- Thus,
\[
\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}_n^2 \rightarrow_p E (X_i^2) - (E X_i)^2 = \text{Var} (X_i).
\]
Under similar conditions to 1-4, one can establish consistency of OLS for the multiple linear regression model:

\[Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_k X_{k,i} + U_i, \]

where \(EU_i = 0 \).

The key assumption is that the errors and regressors are uncorrelated:

\[E (X_{1,i} U_i) = \ldots = E (X_{k,i} U_i) = 0. \]
Omitted variables and the inconsistency of OLS

Suppose that the true model has two regressors:

\[Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + U_i, \]

\[E (X_{1,i} U_i) = E (X_{2,i} U_i) = 0. \]

Suppose that the econometrician includes only \(X_1 \) in the regression when estimating \(\beta_1 \):

\[
\hat{\beta}_{1,n} = \frac{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) Y_i}{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2} \\
= \frac{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) (\beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + U_i)}{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2} \\
= \beta_1 + \beta_2 \frac{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) X_{2,i}}{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2} + \frac{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) U_i}{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2}.
\]
Omitted variables and the inconsistency of OLS

\[\hat{\beta}_{1,n} = \beta_1 + \beta_2 \frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) X_{2,i} \frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2 + \frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) U_i \frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2. \]

- As before,

\[\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) U_i \frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2 = \frac{1}{n} \sum_{i=1}^{n} X_{1,i} U_i - \bar{X}_{1,n} \bar{U}_n \frac{1}{n} \sum_{i=1}^{n} X_{1,i}^2 - \bar{X}_{1,n}^2 \]

\[\rightarrow_p \frac{EX_{1,i}^2 - (EX_{1,i})^2}{0} \]

\[\rightarrow_p \frac{0}{Var(X_{1,i})} = 0. \]
\[\hat{\beta}_{1,n} = \beta_1 + \beta_2 \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) X_{2,i}}{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2} + \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) U_i}{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2}. \]

However,

\[
\frac{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) X_{2,i}}{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2} = \frac{\frac{1}{n} \sum_{i=1}^{n} X_{1,i} X_{2,i} - \bar{X}_{1,n} \bar{X}_{2,n}}{\frac{1}{n} \sum_{i=1}^{n} X_{1,i}^2 - \bar{X}_{1,n}^2} \xrightarrow{p} E \left(X_{1,i} X_{2,i} \right) - \left(E X_{1,i} \right) \left(E X_{2,i} \right) \frac{E X_{2,i}^2 - \left(E X_{1,i} \right)^2}{\text{Var} \left(X_{1,i} \right)} = \text{Cov} \left(X_{1,i}, X_{2,i} \right) \frac{E X_{2,i}^2 - \left(E X_{1,i} \right)^2}{\text{Var} \left(X_{1,i} \right)}. \]
Omitted variables and the inconsistency of OLS

We have,

\[\beta_{1,n} = \beta_1 + \beta_2 \frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) X_{2,i} \frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n})^2 + \frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1,n}) U_i \]

\[\rightarrow_p \beta_1 + \beta_2 \frac{\text{Cov} (X_{1,i}, X_{2,i})}{\text{Var} (X_{1,i})} + \frac{0}{\text{Var} (X_{1,i})} \]

\[= \beta_1 + \beta_2 \frac{\text{Cov} (X_{1,i}, X_{2,i})}{\text{Var} (X_{1,i})} . \]

Thus, \(\beta_{1,n} \) is inconsistent unless:

1. \(\beta_2 = 0 \) (the model is correctly specified).
2. \(\text{Cov} (X_{1,i}, X_{2,i}) = 0 \) (the omitted variable is uncorrelated with the included regressor).
Omitted variables and the inconsistency of OLS

- In this example, the model contains two regressors:

\[
Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + U_i,
\]

\[
E (X_{1,i} U_i) = E (X_{2,i} U_i) = 0.
\]

- However, since \(X_2\) is not controlled for, it goes into the error term:

\[
Y_i = \beta_0 + \beta_1 X_{1,i} + V_i, \text{ where } V_i = \beta_2 X_{2,i} + U_i.
\]

- For consistency of \(\tilde{\beta}_{1,n}\) we need \(\Cov (X_{1,i}, V_i)\) to be equal to zero, however,

\[
\Cov (X_{1,i}, V_i) = \Cov (X_{1,i}, \beta_2 X_{2,i} + U_i) \\
= \Cov (X_{1,i}, \beta_2 X_{2,i}) + \Cov (X_{1,i}, U_i) \\
= \beta_2 \Cov (X_{1,i}, X_{2,i}) + 0 \\
\neq 0, \text{ unless } \beta_2 = 0 \text{ or } \Cov (X_{1,i}, X_{2,i}) = 0.
\]